Effect of Si Doping on Photoluminescence Properties of GaAs Nanowires
Synthesis and Properties of Materials|更新时间:2021-05-20
|
Effect of Si Doping on Photoluminescence Properties of GaAs Nanowires
Chinese Journal of LuminescenceVol. 42, Issue 5, Pages: 629-634(2021)
作者机构:
1.长春理工大学 高功率半导体激光国家重点实验室,吉林 长春 130022
2.长春理工大学 理学院,吉林 长春 130022
作者简介:
基金信息:
National Natural Science Foundation of China(61674021;11674038;61704011;61904017;11804335;12074045);the Project of Education Department of Jilin Province(JJKH20200763KJ)
Xiang LI, Yu-bin KANG, Ji-long TANG, et al. Effect of Si Doping on Photoluminescence Properties of GaAs Nanowires. [J]. Chinese Journal of Luminescence 42(5):629-634(2021)
DOI:
Xiang LI, Yu-bin KANG, Ji-long TANG, et al. Effect of Si Doping on Photoluminescence Properties of GaAs Nanowires. [J]. Chinese Journal of Luminescence 42(5):629-634(2021) DOI: 10.37188/CJL.20210059.
Effect of Si Doping on Photoluminescence Properties of GaAs Nanowires
Undoped and Si-doped gallium arsenide(GaAs) nanowires(NWs) were carried out on Si(111) substrates by molecular beam epitaxy(MBE). The one-dimensional properties of the nanowires were confirmed by scanning electron microscopy(SEM).The presence of Si in doped GaAs NWs was confirmed by X-ray diffraction(XRD) and Raman spectroscopy. The luminescence source of undoped and Si doped GaAs NWs was studied by photoluminescence(PL). The PL results showed that doping changed the radiation recombination mechanism of GaAs NWs. Compared with undoped NWs, the doping results that in the free exciton emission peak and the defect-related emission peak of wurtzite and zinc blende mixed structure disappear simultaneously.
DEL ALAMO J A. Nanometre-scale electronics with Ⅲ-Ⅴ compound semiconductors[J].Nature, 2011, 479(7373):317-323.
DE ARQUER F P G, ARMIN A, MEREDITH P, et al.. Solution-processed semiconductors for next-generation photodetectors[J].Nat. Rev. Mater., 2017, 2(3):16100-1-16.
ZHU X T, LIN F Y, ZHANG Z H, et al.. Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron-hole tube structure[J].Nano Lett., 2020, 20(4):2654-2659.
ZHU X T, LIN F Y, CHEN X Y, et al.. Influence of the depletion region in GaAs/AlGaAs quantum well nanowire photodetector[J].Nanotechnology, 2020, 31(44):444001-1-6.
KASAI S, ASAI T. Stochastic resonance in schottky wrap gate-controlled GaAs nanowire field-effect transistors and their networks[J].Appl. Phys. Express, 2008, 1(8):083001-1-3.
ULLAH A R, MEYER F, GLUSCHKE J G, et al.. P-GaAs nanowire metal-semiconductor field-effect transistors with near-thermal limit gating[J].Nano Lett., 2018, 18(9):5673-5680.
WOO R L, XIAO R, KOBAYASHI Y, et al.. Effect of twinning on the photoluminescence and photoelectrochemical properties of indium phosphide nanowires grown on silicon (111)[J].Nano Lett., 2008, 8(12):4664-4669.
PARKINSON P, JOYCE H J, GAO Q, et al.. Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy[J].Nano Lett., 2009, 9(9):3349-3353.
SAGER D, GUTSCHE C, PROST W, et al.. Recombination dynamics in single GaAs-nanowires with an axial heterojunction:n- versus p-doped areas[J].J. Appl. Phys., 2013, 113(17):174303-1-5.
ALI H, ZHANG Y Y, TANG J, et al.. High-responsivity photodetection by a self-catalyzed phase-pure p-GaAs nanowire[J].Small, 2018, 14(17):1704429-1-9.
HIJAZI H, MONIER G, GIL E, et al.. Si doping of vapor-liquid-solid GaAs nanowires:n-type or p-type?[J].Nano Lett., 2019, 19(7):4498-4504.
HAN N, YANG Z X, WANG F Y, et al.. Modulating the morphology and electrical properties of GaAs nanowires via catalyst stabilization by oxygen[J].ACS Appl. Mater. Interfaces, 2015, 7(9):5591-5597.
BUSSONE G, SCHÄFER-EBERWEIN H, DIMAKIS E, et al.. Correlation of electrical and structural properties of single as-grown GaAs nanowires on Si (111) substrates[J].Nano Lett., 2015, 15(2):981-989.
IHN S G, RYU M Y, SONG J I. Optical properties of undoped, Be-doped, and Si-doped wurtzite-rich GaAs nanowires grown on Si substrates by molecular beam epitaxy[J].Solid State Commun., 2010, 150(15-16):729-733.
KETTERER B, UCCELLI E, FONTCUBERTA I MORRAL A. Mobility and carrier density in p-type GaAs nanowires measured by transmission Raman spectroscopy[J].Nanoscale, 2012, 4(5):1789-1793.
ZARDO I, CONESA-BOJ S, PEIRO F, et al.. Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires:polarization dependence, selection rules, and strain effects[J].Phys. Rev. B, 2009, 80(24):245324-1-11.
SIGNORELLO G, KARG S, BJÖRK M T, et al.. Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain[J].Nano Lett., 2013, 13(3):917-924.
ARAB S, YAO M Q, ZHOU C W, et al.. Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires[J].Appl. Phys. Lett., 2016, 108(18):182106-1-5.
BERGMAN L, CHEN X B, MORRISON J L, et al.. Photoluminescence dynamics in ensembles of wide-band-gap nanocrystallites and powders[J].J. Appl. Phys., 2004, 96(1):675-682.
GE X T, WANG D K, GAO X, et al.. Localized states emission in type-Ⅰ GaAsSb/AlGaAs multiple quantum wells grown by molecular beam epitaxy[J].Phys. Status Solidi-Rapid Res. Lett., 2017, 11(3):1700001-1-5.
VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys[J].J. Appl. Phys., 2001, 89(11):5815-5875.
WANG P H, TANG J L, KANG Y B, et al.. Crystal structure and optical properties of GaAs nanowires[J].Acta Phys. Sinica, 2019, 68(8):087803-1-7. (in Chinese)
MANOOGIAN A, WOOLLEY J C. Temperature dependence of the energy gap in semiconductors[J].Can. J. Phys., 1984, 62(3):285-287.
GRILLI E, GUZZI M, ZAMBONI R, et al.. High-precision determination of the temperature dependence of the fundamental energy gap in gallium arsenide[J].Phys. Rev. B, 1992, 45(4):1638-1644.
BRIONES F, COLLINS D M. Low temperature photoluminescence of lightly Si-doped and undoped MBE GaAs[J].J. Electron. Mater., 1982, 11(4):847-866.
LUCKERT F, HAMILTON D I, YAKUSHEV M V, et al.. Optical properties of high quality Cu2ZnSnSe4 thin films[J].Appl. Phys. Lett., 2011, 99(6):062104-1-3.
Cd2+-doped Cs2ZnCl4 Yellow-emitting Phosphor and Its Optical Properties
Luminescence Mechanism of Bi3+ Doped Materials: First Principles Studies
Two-photon Luminescence of CsPbBr3 Perovskite Microcrystals Fabricated with Sonochemistry Synthesis Method
Synthesis and Luminescent Properties of Gd2[1-x(y)]Eu2x(y)WzMo(1-z)O6 Red Phosphors
Related Author
No data
Related Institution
State Key Laboratory of High Power Semiconductor Laser,Changchun University of Science and Technology
School of Science, Changchun University of Science and Technology
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China