The Joint Funds of the National Natural Science Foundation of China(U1705256);National Natural Science Foundation of China(1771066;51972123;61804058);The Promotion Program for Young and Middle-Aged Teacher in Science and Technology Research of Huaqiao University(ZQN-706)
YU ZOU, ZHAO LI, HENG-HUI CHEN, et al. Effect of Interfacial Modification for TiO2-based Planar Perovskite Solar Cells Using NaTFSI. [J]. Chinese journal of luminescence, 2021, 42(5): 682-690.
DOI:
YU ZOU, ZHAO LI, HENG-HUI CHEN, et al. Effect of Interfacial Modification for TiO2-based Planar Perovskite Solar Cells Using NaTFSI. [J]. Chinese journal of luminescence, 2021, 42(5): 682-690. DOI: 10.37188/CJL.20210045.
Effect of Interfacial Modification for TiO2-based Planar Perovskite Solar Cells Using NaTFSI
A typical perovskite solar cell(PSC) structure involves the light absorbing perovskite layer sandwiched between the electron-transport layer(ETL) and the hole-transport layer(HTL). The charge recombination at the interface between the perovskite layer and the charge-transport layer is considered to be the major cause of the voltage loss of the device. With the modification of the charge-transport layer
it can not only improve its charge transport properties
but also passivate the interface defects
thus enhancing the power conversion efficiency(PCE) and stability of the PSCs. The interface between ETL and perovskite is modified by introducing Na [(CF
3
SO
2
)
2
N] (NaTFSI) on the planar TiO
2
layer. Experimental results show that the ETL modified with the NaTFSI interface layer could not only increase the size of the perovskite grains
but also reduce the grain boundaries and the interface carrier recombination. In addition
the ETL modified with the Na-TFSI can also enhance the conductivity of the ETL and decrease its work function. Finally
we achieved a significant increase in device efficiency from 18.62% to 19.83% by optimizing the NaTFSI interface layer.
关键词
钙钛矿太阳能电池TiO2NaTFSI界面修饰光电转换效率
Keywords
perovskite solar cellsTiO2NaTFSIinterface modificationphotoelectric conversion efficiency
references
KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].J. Am. Chem. Soc., 2009, 131(17):6050-6051.
NREL. Best research-cell efficiency chart[EB/OL]. [2021-01-19].https://www.nrel.gov/pv/cell-efficiency.htmlhttps://www.nrel.gov/pv/cell-efficiency.html.
LEE M M, TEUSCHER J, MIYASAKA T, et al.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].Science, 2012, 338(6107):643-647.
EPERON G E, STRANKS S D, MENELAOU C, et al.. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J].Energy Environ. Sci., 2014, 7(3):982-988.
HAO F, STOUMPOS C C, CAO D H, et al.. Lead-free solid-state organic-inorganic halide perovskite solar cells[J].Nat. Photonics, 2014, 8(6):489-494.
NOEL N K, STRANKS S D, ABATE A, et al.. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J].Energy Environ. Sci., 2014, 7(9):3061-3068.
NOH J H, IM S H, HEO J H, et al.. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J].Nano Lett., 2013, 13(4):1764-1769.
SUN S Y, SALIM T, MATHEWS N, et al.. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells[J].Energy Environ. Sci., 2014, 7(1):399-407.
XING G C, MATHEWS N, SUN S Y, et al.. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J].Science, 2013, 342(6156):344-347.
WU W Q, CHEN D H, CARUSO R A, et al.. Recent progress in hybrid perovskite solar cells based on n-type materials[J].J. Mater. Chem.:A, 2017, 5(21):10092-10109.
ZHOU Y, LI X, LIN H. To be higher and stronger-metal oxide electron transport materials for perovskite solar cells[J].Small, 2020, 16(15):1902579.
ZHOU H P, CHEN Q, LI G, et al.. Interface engineering of highly efficient perovskite solar cells[J].Science, 2014, 345(6196):542-546.
LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J].Nature, 2013, 501(7467):395-398.
SINGH T, ÖZ S, SASINSKA A, et al.. Sulfate-assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali-doped TiO2 electron-transporting layers[J].Adv. Funct. Mater.,2018, 28(14):1706287-1-10.
YANG Y, LIU C, DING Y, et al.. Eliminating charge accumulation via interfacial dipole for efficient and stable perovskite solar cells[J].ACS Appl. Mater. Interfaces, 2019, 11(38):34964-34972.
UNGER E L, HOKE E T, BAILIE C D, et al.. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells[J].Energy Environ. Sci., 2014, 7(11):3690-3698.
YANG Z C, BABU B H, WU S H, et al.. Review on practical interface engineering of perovskite solar cells:from efficiency to stability[J].Solar RRL, 2020, 4(2):1900257.
YANG D, ZHOU X, YANG R X, et al.. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells[J].Energy Environ. Sci., 2016, 9(10):3071-3078.
ZHU L F, XU Y Z, SHI J J, et al.. Efficient perovskite solar cells via simple interfacial modification toward a mesoporous TiO2 electron transportation layer[J].RSC Adv., 2016, 6(85):82282-82288.
TAO C, NEUTZNER S, COLELLA L, et al.. 17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells[J].Energy Environ. Sci., 2015, 8(8):2365-2370.
GIORDANO F, ABATE A, BAENA J P C, et al.. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells[J].Natmmun., 2016, 7(1):10379-1-6.
TU Y G, WU J H, ZHENG M, et al.. TiO2 quantum dots as superb compact block layers for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency of 16.97%[J].Nanoscale, 2015, 7(48):20539-20546.
ZHANG Y N, LI B, FU L, et al.. MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells[J].Electrochim. Acta, 2020, 330:135280.
LIU X P, WU J H, GUO Q Y, et al.. Pyrrole:an additive for improving the efficiency and stability of perovskite solar cells[J].J. Mater. Chem. A, 2019, 7(19):11764-11770.
LEE J W, BAE S H, HSIEH Y T, et al.. A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells[J].Chem, 2017, 3(2):290-302.
ZHANG X Z, WU T Y, XU X X, et al.. Ligand-exchange TiO2 nanocrystals induced formation of high-quality electron transporting layers at low temperature for efficient planar perovskite solar cells[J].Sol. Energy Mater. Sol. Cells, 2018, 178:65-73.
ZHU Q J, WU J H, YUAN P Q, et al.. Ammonium fluoride interface modification for high-performance and long-term stable perovskite solar cells[J].Energy Technol., 2020, 8(1):1901017.
ZHOU W R, LI D, XIAO Z G, et al.. Zwitterion coordination induced highly orientational order of CH3NH3PbI3 perovskite film delivers a high open circuit voltage exceeding 1.2 V[J].Adv. Funct. Mater., 2019, 29(23):1901026.
LAI H T, KAN B, LIU T T, et al.. Two-dimensional ruddlesden-popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%[J].J. Am. Chem. Soc., 2018, 140(37):11639-11646.
Research Progress of Metal Oxide Electron Transporting Materials Applied in Perovskite Solar Cells
Solvent Regulation Strategy for Ambient Preparation of Perovskite Solar Cells
Effect of Refractive Index on Photoelectric Properties of Carbon Dots-based Luminescent Solar Concentrator
Multifunctional Orotic Acid Passivation for Efficient and Stable Perovskite Solar Cells
Related Author
Yu ZOU
Zhao LI
Heng-hui CHEN
Yi-chen LIU
An-ling TONG
Hui-ying YAN
Ruo-wei HE
Guo-xin HUA
Related Institution
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Key Laboratory of Photoelectric Functional Materials, Institute of Materials Physical Chemistry, College of Materials Science and Engineering, Huaqiao University
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University
Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University,,, MS
School of Material Science and Engineering, Hebei University of Technology
Zhejiang Engineering Research Center for Fabrication and Application of Advanced Photovoltaic Materials, Institute for Carbon Neutrality, Ningbo Innovation Centre, Zhejiang University