浏览全部资源
扫码关注微信
1.深圳大学 材料学院, AIE研究中心, 广东 深圳 518060;
2.香港科技大学 化学系, 国家人体组织功能重建工程技术研究中心香港分中心, 中国 香港 999077
Published:01 March 2021,
Received:16 January 2021,
Revised:02 February 2021,
扫 描 看 全 文
Zhi-jun ZHANG, Miao-miao KANG, Yuan-wei WANG, et al. Recent Advances of Aggregation-induced Emission Materials in Phototheranostics. [J]. Chinese Journal of Luminescence 42(3):361-378(2021)
Zhi-jun ZHANG, Miao-miao KANG, Yuan-wei WANG, et al. Recent Advances of Aggregation-induced Emission Materials in Phototheranostics. [J]. Chinese Journal of Luminescence 42(3):361-378(2021) DOI: 10.37188/CJL.20210029.
光学诊疗是一种利用光激活的激发态能量转化效应实现疾病诊断和同时原位治疗的新型诊疗模式,它具有时空选择性高、毒副作用低、疗效好和可控性强等优点,在疾病诊疗中展现了巨大的应用潜力。近些年,得益于其生物安全性好、光物理性质可调、易于合成和功能化修饰、出色的荧光和光敏性能、以及可便于构筑多模态诊疗试剂等优势,聚集诱导发光材料在光学诊疗领域取得了重大突破进展。基于此,本文从如何通过精准分子设计以及调控分子在聚集态下的运动构筑高效的聚集诱导发光光诊疗体系出发,从荧光成像指导的光动力治疗、光声成像指导的光热治疗和多模态成像指导的协同治疗三个方面总结了聚集诱导发光材料在光学诊疗领域的最新研究进展,并对其未来的发展方向与前景进行了展望。
Phototheranostics involving the ingenious integration of light-triggered diagnostics and therapeutics has been recognized to be potentially powerful for disease treatment as it provides high temporal and spatial selectivity
low side effects
high therapeutic effectiveness and controllability. Benefiting from the appreciable biosafety
tuneable photophysical properties
facile processability and functionalization
excellent fluorescence and photosensitizing performances
as well as the feasibility in building multimodal phototheranostic agents
luminogens with aggregation-induced emission(AIE) nature have achieved great breakthrough in the field of phototheranostics over the past few years. This review summarizes the state-of-the-art advancements of AIE luminogens in phototheranostic applications mainly referring to fluorescence imaging-guided photodynamic therapy
photoacoustic imaging-guided photothermal therapy
and multimodal imaging-guided synergistic therapy on the basis of the precise molecular engineering and subtle regulation of molecular aggregation behaviors. Additionally
a brief conclusion and perspectives for the future of this field are also presented at the end of this review.
聚集诱导发光光学诊疗聚集增强诊疗生物医学应用
aggregation-induced emissionphototheranosticsaggregation-enhanced theranosticsbiomedical applications
LAMMERS T, AIME S, HENNINK W E, et al. Theranostic nanomedicine [J].Acc. Chem. Res., 2011,44(10):1029-1038.
MUTHU M S, LEONG D T, MEI L, et al. Nanotheranostics-application and further development of nanomedicine strategies for advanced theranostics [J].Theranostics, 2014,4(6):660-677.
RYU J H, LEE S, SON S, et al. Theranostic nanoparticles for future personalized medicine [J].J. Control Release, 2014,190:477-484.
YANG Z, CHEN X Y. Semiconducting perylene diimide nanostructure:multifunctional phototheranostic nanoplatform [J].Acc. Chem. Res., 2019,52(5):1245-1254.
AI X Z, MU J, XING B G. Recent advances of light-mediated theranostics [J].Theranostics, 2016,6(13):2439-2457.
NG K K, ZHENG G. Molecular interactions in organic nanoparticles for phototheranostic applications [J].Chem. Rev., 2015,115(19):11012-11042.
XIE J, LEE S, CHEN X Y. Nanoparticle-based theranostic agents [J].Adv. Drug Deliv. Rev., 2010,62(11):1064-1079.
CAI Y, SI W L, HUANG W, et al. Organic dye based nanoparticles for cancer phototheranostics [J].Small, 2018,14(25):1704247-1-17.
GIEPMANS B N G, ADAMS S R, ELLISMAN M H, et al. The fluorescent toolbox for assessing protein location and function [J].Science, 2006,312(5771):217-224.
TERAI T, NAGANO T. Fluorescent probes for bioimaging applications [J].Curr. Opin. Chem. Biol., 2008,12(5):515-521.
BIRKS B J. Photophysics of Aromatic Molecules[M].London:Wiley, 1970.
ETHIRAJAN M, CHEN Y H, JOSHI P, et al. The role of porphyrin chemistry in tumor imaging and photodynamic therapy [J].Chem. Soc. Rev., 2011,40(1):340-362.
LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J].Chem. Commun., 2001(18):1740-1741.
MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-induced emission:together we shine,united we soar! [J].Chem. Rev., 2015,115(21):11718-11940.
ZHAO Z, ZHANG H K, LAM J W Y, et al. Aggregation-induced emission:new vistas at the aggregate level [J].Angew. Chem. Int. Ed., 2020,59(25):9888-9907.
WANG D, LEE M M S, XU W H, et al. Theranostics based on AIEgens [J].Theranostics, 2018,8(18):4925-4956.
FENG G X, LIU B. Aggregation-induced emission (AIE) dots:emerging theranostic nanolights [J].Acc. Chem. Res., 2018,51(6):1404-1414.
HAN T, YAN D Y, WU Q, et al. Aggregation-induced emission:a rising star in chemistry and materials science [J].Chin. J. Chem., 2020,doi: 10.1002/cjoc.202000520http://doi.org/10.1002/cjoc.202000520.
YAN D Y, WU Q, WANG D, et al. Innovative synthetic protocols for aggregation-induced emission luminogens:recent advances and prospects [J].Angew. Chem. Int. Ed., 2020,doi: 10.1002/anie.202006191http://doi.org/10.1002/anie.202006191.
WANG D, TANG B Z. Aggregation-induced emission luminogens for activity-based sensing [J].Acc. Chem. Res., 2019,52(9):2559-2570.
HU F, XU S D, LIU B. Photosensitizers with aggregation-induced emission:materials and biomedical applications [J].Adv. Mater., 2018,30(45):1801350-1-29.
FRACKOWIAK D. The Jablonski diagram [J].J. Photoch. Photobio. B Biol., 1988,2(3):399.
YANG L, WANG X J, ZHANG G Z, et al. Aggregation-induced intersystem crossing:a novel strategy for efficient molecular phosphorescence [J].Nanoscale, 2016,8(40):17422-17426.
CAI X L, LIU B. Aggregation-induced emission:recent advances in materials and biomedical applications [J].Angew. Chem. Int. Ed., 2020,59(25):9868-9886.
FENG G X, ZHANG G Q, DING D. Design of superior phototheranostic agents guided by Jablonski diagrams [J].Chem. Soc. Rev., 2020,49(22):8179-8234.
LIU Y J, BHATTARAI P, DAI Z F, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer [J].Chem. Soc. Rev., 2019,48(7):2053-2108.
HE F, YANG G X, YANG P P, et al. A new single 808 nm NIR light-induced imaging-guided multifunctional cancer therapy platform [J].Adv. Funct. Mater., 2015,25(25):3966-3976.
KANG M M, ZHANG Z J, SONG N, et al. Aggregation-enhanced theranostics:AIE sparkles in biomedical field [J].Aggregate, 2020,1(1):80-106.
FENG G X, LIU B. Multifunctional AIEgens for future theranostics [J].Small, 2016,12(47):6528-6535.
CELLI J P, SPRING B Q, RIZVI I, et al. Imaging and photodynamic therapy:mechanisms,monitoring,and optimization [J].Chem. Rev., 2010,110(5):2795-2838.
LI X S, LEE S, YOON J. Supramolecular photosensitizers rejuvenate photodynamic therapy [J].Chem. Soc. Rev., 2018,47(4):1174-1188.
DOLMANS D E J G J, FUKUMURA D, JAIN R K. Photodynamic therapy for cancer [J].Nat. Rev. Cancer, 2003,3(5):380-387.
CASTANO A P, MROZ P, HAMBLIN M R. Photodynamic therapy and anti-tumour immunity [J].Nat. Rev. Cancer, 2006,6(7):535-545.
AGOSTINIS P, BERG K, CENGEL K A, et al. Photodynamic therapy of cancer:an update [J].CA Cancer J. Clin., 2011,61(4):250-281.
HAMBLIN M R, HASAN T. Photodynamic therapy:a new antimicrobial approach to infectious disease? [J].Photochem. Photobiol. Sci., 2004,3(5):436-450.
DAI J, WU X, DING S Y, et al. Aggregation-induced emission photosensitizers:from molecular design to photodynamic therapy [J].J. Med. Chem., 2020,63(5):1996-2012.
GAO M, TANG B Z. AIE-based cancer theranostics [J].Coordin. Chem. Rev., 2020,402:213076.
XU S D, DUAN Y K, LIU B. Precise molecular design for high-performance luminogens with aggregation-induced emission [J].Adv. Mater., 2020,32(1):1903530-1-31.
PLAETZER K, KRAMMER B, BERLANDA J, et al. Photophysics and photochemistry of photodynamic therapy:fundamental aspects [J].Lasers Med. Sci., 2009,24(2):259-268.
BAPTISTA M S, CADET J, DI MASCIO P, et al. Type Ⅰ and type Ⅱ photosensitized oxidation reactions:guidelines and mechanistic pathways [J].Photochem. Photobiol., 2017,93(4):912-919.
HENDERSON B W, DOUGHERTY T J. How does photodynamic therapy work? [J].Photochem. Photobiol., 1992,55(1):145-157.
OGILBY P R. Singlet oxygen:there is indeed something new under the sun [J].Chem. Soc. Rev., 2010,39(8):3181-3209.
XU S D, YUAN Y Y, CAI X L, et al. Tuning the singlet-triplet energy gap:a unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics [J].Chem. Sci., 2015,6(10):5824-5830.
ZHAO J Z, WU W H, SUN J F, et al. Triplet photosensitizers:from molecular design to applications [J].Chem. Soc. Rev., 2013,42(12):5323-5351.
HU F, HUANG Y Y, ZHANG G X, et al. Targeted bioimaging and photodynamic therapy of cancer cells with an activatable red fluorescent bioprobe [J].Anal. Chem., 2014,86(15):7987-7995.
WU W B, MAO D, HU F, et al. A highly efficient and photostable photosensitizer with near-infrared aggregation-induced emission for image-guided photodynamic anticancer therapy [J].Adv. Mater., 2017,29(33):1700548-1-7.
LIU S J, ZHANG H K, LI Y Y, et al. Strategies to enhance the photosensitization:polymerization and the donor-acceptor even-odd effect [J].Angew. Chem. Int. Ed., 2018,57(46):15189-15193.
GUI C, ZHAO E G, KWOK R T K, et al. AIE-active theranostic system:selective staining and killing of cancer cells [J].Chem. Sci., 2017,8(3):1822-1830.
ZHANG T F, LI Y Y, ZHENG Z, et al. In situ monitoring apoptosis process by a self-reporting photosensitizer [J].J. Am. Chem. Soc., 2019,141(14):5612-5616.
YU K W, PAN J Y, HUSAMELDEN E, et al. Aggregation-induced emission based fluorogens for mitochondria-targeted tumor imaging and theranostics [J].Chem. Asian J., 2020,15(23):3942-3960.
XU W H, LEE M M S, NIE J J, et al. Three-pronged attack by homologous far-red/NIR AIEgens to achieve 1+1+1>3 synergistic enhanced photodynamic therapy [J].Angew. Chem. Int. Ed., 2020,59(24):9610-9616.
ZHUANG Z Y, DAI J, YU M X, et al. Type Ⅰ photosensitizers based on phosphindole oxide for photodynamic therapy:apoptosis and autophagy induced by endoplasmic reticulum stress [J].Chem. Sci., 2020,11(13):3405-3417.
WAN Q, ZHANG R Y, ZHUANG Z Y, et al. Molecular engineering to boost AIE-active free radical photogenerators and enable high-performance photodynamic therapy under hypoxia [J].Adv. Funct. Mater., 2020,30(39):2002057-1-12.
BAI H T, HE W, CHAU J H C, et al. AIEgens for microbial detection and antimicrobial therapy [J].Biomaterials, 2021,268:120598.
KANG M M, ZHOU C C, WU S M, et al. Evaluation of structure-function relationships of aggregation-induced emission luminogens for simultaneous dual applications of specific discrimination and efficient photodynamic killing of gram-positive bacteria [J].J. Am. Chem. Soc., 2019,141(42):16781-16789.
WU W B, MAO D, XU S D, et al. Polymerization-enhanced photosensitization[J].Chem, 2018,4(8):1937-1951.
SUN Z Y, ZHANG L P, WU F P, et al. Photosensitizers for two-photon excited photodynamic therapy [J].Adv. Funct. Mater., 2017,27(48):1704079.
BROWN S. Two photons are better than one [J].Nat. Photonics, 2008,2(7):394-395.
SHEN Y Z, SHUHENDLER A J, YE D J, et al. Two-photon excitation nanoparticles for photodynamic therapy [J].Chem. Soc. Rev., 2016,45(24):6725-6741.
WANG S W, WU W B, MANGHNANI P, et al. Polymerization-enhanced two-photon photosensitization for precise photodynamic therapy [J].ACS Nano, 2019,13(3):3095-3105.
DING D, GOH C C, FENG G X, et al. Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging [J].Adv. Mater., 2013,25(42):6083-6088.
LI D Y, QIN W, XU B, et al. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging [J].Adv. Mater., 2017,29(43):1703643-1-9.
LI D D, ZHANG Y P, FAN Z et al. Coupling of chromophores with exactly opposite luminescence behaviours in mesostructured organosilicas for high-efficiency multicolour emission [J].Chem. Sci., 2015,6(11):6097-6101.
TAN C L, QI X Y, HUANG X et al. Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence [J].Adv. Mater., 2014,26(11):1735-1739.
QIN W, DING D, LIU J Z, et al. Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications [J].Adv. Funct. Mater., 2012,22(4):771-779.
FENG H T, LI Y Y, DUAN X et al. Substitution activated precise phototheranostics through supramolecular assembly of AIEgen and calixarene [J].J. Am. Chem. Soc., 2020,142(37):15966-15974.
FENG H T, ZOU S M, CHEN M et al. Tuning push-pull electronic effects of AIEgens to boost the theranostic efficacy for colon cancer [J].J. Am. Chem. Soc., 2020,142(26):11442-11450.
SONG N, ZHANG Z J, LIU P Y, et al. Nanomaterials with supramolecular assembly based on AIE luminogens for theranostic applications [J].Adv. Mater., 2020,32(49):2004208.
FENG G X, WU W B, XU S D, et al. Far red/near-infrared AIE dots for image-guided photodynamic cancer cell ablation [J].ACS Appl. Mater. Interfaces, 2016,8(33):21193-21200.
GU X G, ZHANG X Y, MA H L. et al. Corannulene-incorporated AIE nanodots with highly suppressed nonradiative decay for boosted cancer phototheranostics in vivo[J].Adv. Mater., 2018,30(26):1801065-1-9.
HUANG X H, JAIN P K, EL-SAYED I H, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles [J].Lasers Med. Sci., 2008,23(3):217-228.
SONG X J, CHEN Q, LIU Z. Recent advances in the development of organic photothermal nano-agents [J].Nano Res., 2015,8(2):340-354.
PU K Y, SHUHENDLER A J, JOKERST J V, et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice [J].Nat. Nanotech., 2014,9(3):233-239.
KIM C, FAVAZZA C, WANG L V. In vivo photoacoustic tomography of chemicals:high-resolution functional and molecular optical imaging at new depths [J].Chem. Rev., 2010,110(5):2756-2782.
CHEN S J, WANG H, HONG Y N, et al. Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging [J].Mater. Horiz., 2016,3(4):283-293.
ZHAO Z, CHEN C, WU W T, et al. Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles [J].Nat. Commun., 2019,10:768.
LIU S J, ZHOU X, ZHANG H K, et al. Molecular motion in aggregates:manipulating TICT for boosting photothermal theranostics [J].J. Am. Chem. Soc., 2019,141(13):5359-5368.
BU F, WANG E J, PENG Q, et al. Structural and theoretical insights into the AIE attributes of phosphindole oxide:the balance between rigidity and flexibility [J].Chem. Eur. J., 2015,21(11):4440-4449.
CHEN M, ZHANG X Y, LIU J K, et al. Evoking photothermy by capturing intramolecular bond stretching vibration-induced dark-state energy [J].ACS Nano, 2020,14(4):4265-4275.
LEE D E, KOO H, SUN I C, et al. Multifunctional nanoparticles for multimodal imaging and theragnosis [J].Chem. Soc. Rev., 2012,41(7):2656-2672.
FAN W P, YUNG B, HUANG P, et al. Nanotechnology for multimodal synergistic cancer therapy [J].Chem. Rev., 2017,117(22):13566-13638.
CHEN C, OU H L, LIU R H, et al. Regulating the photophysical property of organic/polymer optical agents for promoted cancer phototheranostics [J].Adv. Mater., 2020,32(3):1806331-1-6.
LOVELL J F, JIN C S, HUYNH E, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents [J].Nat. Mater., 2011,10(4):324-332.
ANTARIS A L, CHEN H, CHENG K, et al. A small-molecule dye for NIR-Ⅱ imaging [J].Nat. Mater., 2016,15(2):235-242.
JUNG H S, LEE J H, KIM K, et al. A mitochondria-targeted cryptocyanine-based photothermogenic photosensitizer [J].J. Am. Chem. Soc., 2017,139(29):9972-9978.
LI X S, KIM C Y, LEE S, et al. Nanostructured phthalocyanine assemblies with protein-driven switchable photoactivities for biophotonic imaging and therapy [J].J. Am. Chem. Soc., 2017,139(31):10880-10886.
LI X S, YU S, LEE Y, et al. In vivo albumin traps photosensitizer monomers from self-assembled phthalocyanine nanovesicles:a facile and switchable theranostic approach [J].J. Am. Chem. Soc., 2019,141(3):1366-1372.
WANG D, LEE M M S, XU W H, et al. Boosting non-radiative decay to do useful work:development of a multi-modality theranostic system from an AIEgen [J].Angew. Chem. Int. Ed., 2019,58(17):5628-5632.
ZHANG Z J, XU W H, KANG M M, et al. An all-round athlete on the track of phototheranostics:subtly regulating the balance between radiative and nonradiative decays for multimodal imaging-guided synergistic therapy [J].Adv. Mater., 2020,32(36):2003210.
XU W H, ZHANG Z J, KANG M M, et al. Making the best use of excited-state energy:multimodality theranostic systems based on second near-infrared (NIR-Ⅱ) aggregation-induced emission luminogens(AIEgens) [J].ACS Mater. Lett., 2020,2(8):1033-1040.
ZHU W, KANG M M, WU Q, et al. Zwitterionic AIEgens:rational molecular design for NIR-Ⅱ fluorescence imaging-guided synergistic phototherapy [J].Adv. Funct. Mater., 2020,31(3):2007026.
XU W H, WANG D, TANG B Z. NIR-Ⅱ AIEgens:a win-win integration towards bioapplications [J].Angew. Chem. Int. Ed., 2020.
0
Views
521
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution