浏览全部资源
扫码关注微信
华中科技大学 光学与电子信息学院, 湖北 武汉 430074
Published:2020-10,
Received:14 July 2020,
Accepted:4 August 2020
扫 描 看 全 文
Jing CHEN, Zhao YANG, Yu-hao HUANG, et al. Research Progress of Optical Fiber Sensors Based on Fluorescence Quenching Effect. [J]. Chinese Journal of Luminescence 41(10):1269-1278(2020)
Jing CHEN, Zhao YANG, Yu-hao HUANG, et al. Research Progress of Optical Fiber Sensors Based on Fluorescence Quenching Effect. [J]. Chinese Journal of Luminescence 41(10):1269-1278(2020) DOI: 10.37188/CJL.20200206.
光纤荧光传感器结合了荧光检测灵敏度高、鉴别性强和光纤体积小、抗干扰能力强等优点,由于部分荧光检测物质对荧光强度有猝灭作用,所以基于猝灭效应的光纤荧光传感器具有重要的研究意义。本文对基于荧光猝灭效应光纤传感器的研究进展进行综述,简要描述了荧光猝灭效应的检测机理,并根据传感光纤结构的不同,对光纤与荧光检测的结合机理进行了分类总结。在此基础上阐述了基于荧光猝灭效应的光纤荧光传感器在重金属离子检测、爆炸物检测等领域的应用,分析了猝灭剂、荧光材料的相互作用和传感器的性能指标,最后对其发展方向进行了展望。
Optical fiber fluorescence sensor combines the advantages of high sensitivity
strong discrimination of the fluorescence detection and small size
strong anti-interference ability of fiber. Because some of the fluorescent detection substances have a quenching effect on the fluorescence intensity
the optical fiber fluorescence sensor based on the quenching effect has important research significance. In this paper
the research progress of the optical fiber sensor based on the fluorescence quenching effect is reviewed. The detection mechanism of the fluorescence quenching effect is briefly described. The combination mechanism of the optical fiber and the fluorescence detection is classified and summarized according to the structure of the sensing optical fiber. On this basis
the applications of the optical fiber fluorescent sensor based on the fluorescence quenching effect in the fields of heavy metal ion detection
explosive detection and other fields are described. The interaction between the quencher and fluorescent material
and the performance index of the sensor are analyzed. Finally
the development direction of the optical fiber sensors based on fluorescence quenching effect is prospected.
光谱检测光纤传感发光机理荧光猝灭
spectral detectionoptical fiber sensingluminescence mechanismfluorescence quenching
史慧超.基于神经网络的光纤荧光海藻测量理论及应用研究[D].秦皇岛: 燕山大学, 2010: 10-17.
SHI H C. Study on Theory and Application of Optical Fiber Fluorescence Measurement for Algae Based on Nerve Network [D]. Qinhuangdao: Yanshan University of China, 2010: 10-17. (in Chinese)
NÖRZ D, FISCHER N, SCHULTZE A, et al.. Clinical evaluation of a SARS-CoV-2 RT-PCR assay on a fully automated system for rapid on-demand testing in the hospital setting[J].J. Clin. Virol., 2020, 128:104390-1-3.
何关金.基于微流控技术的数字PCR检测仪设计与实现[J].天津科技, 2020, 47(1):35-40.
HE G J. Design and implementation of digital PCR detector based on microfluidic technology[J].Tianjin Sci. Technol., 2020, 47(1):35-40. (in Chinese)
MCEVOY A K, MCDONAGH C M, MACCRAITH B D. Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complexes immobilized in sol-gel-derived porous silica coatings[J].Analyst, 1996, 121(6):785-788.
KAUTSKY H, DE BRUIJN H. Die Aufklärung der Photoluminescenztilgung fluorescierender Systeme durch Sauerstoff:die Bildung aktiver, diffusionsfähiger Sauerstoffmoleküle durch Sensibilisierung[J].Naturwissenschaften, 1931, 19(52):1043-1043.
KAUTSKY H. Energie-Umwandlung an Grenzflächen, VⅡ. Mitteil.:H. Kautsky, H. de Bruijn, R. Neuwirth und W. Baumeister:photo-sensibilisierte oxydation als wirkung eines aktiven, metastabilen zustandes des sauerstoff-moleküls[J].Eur. J. Inorg. Chem., 1933, 66(10):1588-1600.
KAUTSKY H. Quenching of luminescence by oxygen[J]. Trans. Faraday Soc., 1939, 35:216-219.
KUZMIN A V, PLEKHANOV М S, LESNICHYOVA A S. Influence of impurities on the bulk and grain-boundary conductivity of CaZrO3-based proton-conducting electrolyte:a distribution of relaxation time study[J].Electrochim. Acta, 2020, 348:136327.
HONG J X, XIA Q F, ZHOU E B, et al.. NIR fluorescent probe based on a modified rhodol-dye with good water solubility and large Stokes shift for monitoring CO in living systems[J].Talanta, 2020, 215:120914.
PIERCE M E, GRANT S A. Development of a FRET based fiber-optic biosensor for early detection of myocardial infarction[C].Proceedings of The 26th Annual International Conference of The IEEE Engineering in Medicine and Biology Society, San Francisco, 2004: 2098-2101.
ZHAO J W, ZHENG Y Y, PANG Y Y, et al.. Graphene quantum dots as full-color and stimulus responsive fluorescence ink for information encryption[J].J. Colloid Interface Sci., 2020, 579:307-314.
LIAO K C, HOGEN-ESCH T, RICHMOND F J,et al.. Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo [J].Biosens. Bioelectron., 2008, 23(10):1458-1465.
HE W Y, LIU R Q, LIAO Y H, et al.. A new 1, 2, 3-triazole and its rhodamine B derivatives as a fluorescence probe for mercury ions[J].Anal. Biochem., 2020, 598:113690.
JIN C Z, LIANG F Y, WANG J Q, et al.. Rational design of cyclometalated iridium(Ⅲ) complexes for three-photon phosphorescence bioimaging [J].Angew. Chem., 2020, 132(37):16121-16125
PENJWEINI R, ROARKE B, ALSPAUGH G, et al.. Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism[J].Redox Biol., 2020, 34:101549-1-25.
BENITO-PEÑA E, VALDÉSM G, GLAHN-MARTÍNEZ B, et al.. Fluorescence based fiber optic and planar waveguide biosensors. A review[J].Anal. Chim. Acta, 2016, 943:17-40.
STENKEN J A. Introduction to fluorescence sensing[J].J. Am. Chem. Soc., 2009, 131(30):10791.
VALEUR B, BERBERAN-SANTOS M N. Molecular Fluorescence:Principles and Applications [M]. 2nd ed. Weinheim:Wiley-VCH, 2012.
UTZINGER U, RICHARDS-KORTUM R R. Fiber optic probes for biomedical optical spectroscopy[J].J. Biomed. Opt., 2003, 8(1):121-147.
SÁNCHEZ-ESCOBAR S, HERNÁNDEZ-CORDERO J. Fiber optic fluorescence temperature sensors using up-conversion from rare-earth polymer composites[J].Opt. Lett., 2019, 44(5):1194-1197.
MORADI V, AKBARI M, WILD P. A fluorescence-based pH sensor with microfluidic mixing and fiber optic detection for wide range pH measurements[J].Sens. Actuators A:Phys., 2019, 297:111507.
帅彬彬.光子晶体光纤表面等离子体共振传感机理及其技术研究[D].武汉: 华中科技大学, 2013.
SHUAI B B. Research on The Photonic Crystal Fiber Based Plasmonic Sensing Mechanism and Its Technique [D]. Wuhan: Huazhong University of Science and Technology, 2013. (in Chinese)
LI Z Y, XU Y X, FANG W, et al.. Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip[J].Sensors, 2015, 15(3):4890-4898.
ZHANG Z H, HUA F, LIU T, et al.. A double-taper optical fiber-based radiation wave other than evanescent wave in all-fiber immunofluorescence biosensor for quantitative detection of Escherichia coli O157:H7[J].PLoS One, 2014, 9(5):e95429.
刘婷.基于荧光与表面增强拉曼光谱的光纤生化传感器[D].北京: 清华大学, 2014: 26-27.
LIU T. Optical Fiber Biochemical Sensor Based on Fluorescence and surface enhanced Raman Spectra [D]. Beijing: Tsinghua University, 2014: 26-27. (in Chinese)
邸志刚, 贾春荣, 姚建铨, 等.基于银纳米颗粒的HCPCF SERS传感系统优化设计[J].红外与激光工程, 2015, 44(4):1317-1322.
DI Z G, JIA C R, YAO J Q, et al.. Optimization on HCPCF SERS sensor based on silver nanoparticles[J].Infrared Laser Eng., 2015, 44(4):1317-1322. (in Chinese)
CREGAN R F, MANGAN B J, KNIGHT J C, et al.. Single-mode photonic band gap guidance of light in air[J].Science, 1999, 285(5433):1537-1539.
CHEN H F, JIANG Q J, QIU Y Q, et al.. Hollow-core-photonic-crystal-fiber-based miniaturized sensor for the detection of aggregation-induced-emission molecules[J].Anal. Chem., 2019, 91(1):780-784.
YU J, ZHAO X M, LIU B H, et al.. Reduction in lasing threshold of hollow-core microstructured optical fiber optofluidic laser based on fluorescence resonant energy transfer[J].Opt. Fiber Technol., 2020, 58:102281.
BODO M, BALLONI S, LUMARE E, et al.. Effects of sub-toxic cadmium concentrations on bone gene expression program:results of an in vitro study[J].Toxicol. Vitro, 2010, 24(6):1670-1680.
FATTA-KASSINOS D, KALAVROUZIOTIS I K, KOUKOULAKIS P H, et al.. The risks associated with wastewater reuse and xenobiotics in the agroecological environment[J].Sci. Total Environ., 2011, 409(19):3555-3563.
ZHOU M J, GUO J J, YANG C X. Ratiometric fluorescence sensor for Fe3+ ions detection based on quantum dot-doped hydrogel optical fiber[J].Sens. Actuators B: Chem., 2018, 264:52-58.
ZHAO L X, DI F, WANG D B, et al.. Chemiluminescence of carbon dots under strong alkaline solutions:a novel insight into carbon dot optical properties[J].Nanoscale, 2013, 5(7):2655-2658.
MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites[J].J. Am. Chem. Soc., 1993, 115(19):8706-8715.
LIU Y F, TANG X S, HUANG W, et al.. A fluorometric optical fiber nanoprobe for copper(Ⅱ) by using AgInZnS quantum dots[J].Microchim. Acta, 2020, 187(2):146.
GONÇALVES H M R, DUARTE A J, ESTEVES DA SILVA J C G. Optical fiber sensor for Hg(Ⅱ) based on carbon dots[J].Biosens. Bioelectron., 2010, 26(4):1302-1306.
LIU T, WANG W Q, JIAN D, et al.. Quantitative remote and on-site Hg2+ detection using the handheld smartphone based optical fiber fluorescence sensor (SOFFS)[J].Sens. Actuators B: Chem., 2019, 301:127168.
创新. SIM系列痕量爆炸物探测器[J].军民两用技术与产品, 2007(12):31.
CHUANG X. SIM series trace explosive detector[J].Univers. Technol. Prod., 2007(12):31. (in Chinese)
CHU F H, YANG J J. Coil-shaped plastic optical fiber sensor heads for fluorescence quenching based TNT sensing[J].Sens. Actuators A: Phys., 2012, 175:43-46.
LIU F K, CUI M X, MA J J, et al.. An optical fiber taper fluorescent probe for detection of nitro-explosives based on tetraphenylethylene with aggregation-induced emission[J].Opt. Fiber Technol., 2017, 36:98-104.
YANG J C, SHEN R, YAN P X, et al.. Fluorescence sensor for volatile trace explosives based on a hollow core photonic crystal fiber[J].Sens. Actuators B: Chem., 2020, 306:127585.
DING L Y, FAN C, ZHONG Y M, et al.. A sensitive optic fiber sensor based on CdSe QDs fluorophore for nitric oxide detection[J].Sens. Actuators B:Chem., 2013, 185:70-76.
邓辉, 王晓英, 肖吉群, 等.基于荧光猝灭的锥尖型光纤氧传感探头[J].仪表技术与传感器, 2015(7):14-17.
DENG H, WANG X Y, XIAO J Q, et al.. Conical tapered tip fiber optical oxygen sensor probe based on fluorescence quenching[J].Instrum. Tech. Sens., 2015(7):14-17. (in Chinese)
ENDRESS+HAUSER. Technical information oxymax COS61D/COS61[EB/OL]. (2018-07-17)[2020-05-29].https://portal.endress.com/wa001/dla/5000543/5894/000/04/TI00387CEN_1312.pdfhttps://portal.endress.com/wa001/dla/5000543/5894/000/04/TI00387CEN_1312.pdf.
ZHAO Y T, PANG C L, WEN Z, et al.. A microfiber temperature sensor based on fluorescence lifetime[J].Opt. Commun., 2018, 426:231-236.
ANRITSU METER CO., LTD. FiberOptic thermometer FL-2000 user's manual[EB/OL]. (2019-01-21)[2020-05-29].http://www.anritsu-meter.com.cnhttp://www.anritsu-meter.com.cn.
ANRITSU METER CO., LTD. 4-channel FiberOptic thermometer "AMOTH" FL-2400 user's manual[EB/OL]. (2019-01-21)[2020-05-29].http://www.anritsu-meter.com.cnhttp://www.anritsu-meter.com.cn.
萩原康二, 郝文杰.荧光式光纤温度计[J].传感器技术, 1993(6):56-58.
KOJI H, HAO W J. Fluorescent fiber optic thermometer[J].J. Trans. Technol., 1993(6):56-58. (in Chinese)
TON X A, ACHA V, BONOMI P, et al.. A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe[J].Biosens. Bioelectron., 2015, 64:359-366.
ZHU Y Y, CUI M X, MA J J, et al.. Fluorescence detection of d-aspartic acid based on thiol-ene cross-linked molecularly imprinted optical fiber probe[J].Sens. Actuators B: Chem., 2020, 305:127323.
NGUYEN T H, LIN Y C, CHEN C T, et al.. Fibre optic chloride sensor based on fluorescence quenching of an acridinium dye[C].Proceedings of The 20th International Conference on Optical Fibre Sensors, Edinburgh, 2009: 750314-1-5.
POLLEY N, SINGH S, GIRI A, et al.. Ultrafast FRET at fiber tips:potential applications in sensitive remote sensing of molecular interaction[J].Sens. Actuators B: Chem., 2015, 210:381-388.
GUO J J, NIU M X, YANG C X. Highly flexible and stretchable optical strain sensing for human motion detection[J].Optica, 2017, 4(10):1285-1288.
崔红.胆甾修饰OPE衍生物薄膜的创制及其荧光传感性能研究[D].西安: 陕西师范大学, 2013: 31-37.
CUI H. Creation of Cholesteric Modified OPE Derivative Film and Its Fluorescence Sensing Performance [D]. Xi'an: Shaanxi Normal University, 2013: 26-27. (in Chinese)
李晓峰.稀土掺杂碳量子点的制备及其荧光性能的研究[D].济南: 济南大学, 2019: 17-20.
LI X F. Preparation and Fluorescence Properties of Rare Earth Doped Carbon Quantum Dots [D]. Jinan: University of Jinan, 2014: 17-20. (in Chinese)
0
Views
659
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution