In this paper, polyethylenimine(PEI) was introduced into inverted white light-emitting diodes(IOLEDs) with the structure of ITO/ZnO/PEI/EML/TAPC/MoO,3,/Al. The effects of PEI as a surface modification layer on the performance of devices were investigated. It is found that the introduction of PEI can effectively reduce the work function of ZnO electron injection layer and control the electron injection of devices, improving the hole and electron injection balance. At the same time, it can passivate the surface defect states of ZnO and reduce exciton quenching. When the concentration of PEI is 1.0 mg/mL, white IOLEDs possess the optimal performance, with the largest brightness of 11 720 cd·m ,-2, and efficiency of 16.0 cd·A,-1, respectively. The introduction of PEI modified layer lays a foundation for the further research of inverted OLEDs with high performance.
关键词
PEI界面修饰溶液法倒置白光OLED
Keywords
polyethylenimine(PEI)interface modificationsolution processinginverted white OLED
YOU X M, ZHANG X W, CHEN Y H, et al.. High efficiency green phosphorescent organic light emitting diodes using an ultrathin nondoped emitting layer[J].Chin. J. Lumin., 2016, 37(8):961-966. (in Chinese)
WU M Z, GUO R D, ZHANG Z S, et al.. Top emitting white organic light emitting diodes towards full color organic microdisplay[J].Chin. J. Liq. Cryst. Disp., 2015, 30(5):790-795. (in Chinese)
SHEN J L, LI F, CAO Z H, et al.. Light scattering in nanoparticle doped transparent polyimide substrates[J].ACS Appl. Mater. Interfaces, 2017, 9(17):14990-14997.
CAO Y, YU G, PARKER I D, et al.. Ultrathin layer alkaline earth metals as stable electron-injecting electrodes for polymer light emitting diodes[J].J. Appl. Phys., 2000, 88(6):3618-3623.
GONG X, LIM S H, OSTROWSKI J C, et al.. Phosphorescence from iridium complexes doped into polymer blends[J].J. Appl. Phys., 2004, 95(3):948-953.
WU H B, ZOU J H, LIU F, et al.. Efficient single active layer electrophosphorescent white polymer light-emitting diodes[J].Adv. Mater., 2008, 20(4):696-702.
KIM H D, YOO K J, KIM M H, et al.. Challenges to AM-OLED technology for mobile display[C].Proceedings of The 12th International Display Workshops in Conjunction with Asia Display, Takamatsu, Japan, 2005: 267-270.
RJOUB A, TARAWNEH B, ALGHSOON R. Active matrix organic light emitting diode displays(AMOLED) new pixel design[J].Microelectron. Eng., 2019, 212:42-52.
WANG D B, WU Y W, BI R, et al.. Solution-processed sodium hydroxide as the electron injection layer in inverted bottom-emission organic light-emitting diodes[J].J. Mater. Chem. C, 2015, 3(16):3922-3927.
LEE J H, WANG P S, PARK H D, et al.. A high performance inverted organic light emitting diode using an electron transporting material with low energy barrier for electron injection[J].Org. Electron., 2011, 12(11):1763-1767.
LEE B R, JUNG E D, PARK J S, et al.. Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer[J].Nat. Commun., 2014, 5:4840.
ZHOU X, PFEIFFER M, HUANG J S, et al.. Low-voltage inverted transparent vacuum deposited organic light-emitting diodes using electrical doping[J].Appl. Phys. Lett., 2002, 81(5):922-924.
LEE B R, CHOI H, SUNPARK J, et al.. Surface modification of metal oxide using ionic liquid molecules in hybrid organic-inorganic optoelectronic devices[J].J. Mater. Chem., 2011, 21(7):2051-2053.
BOLINK H J, CORONADO E, REPETTO D, et al.. Inverted solution processable OLEDs using a metal oxide as an electron injection contact[J].Adv. Funct. Mater., 2008, 18(1):145-150.
HO S, LIU S Y, CHEN Y, et al.. Review of recent progress in multilayer solution-processed organic light-emitting diodes[J].J. Photonics Energy, 2015, 5(1):057611.
CHEN J S, SHI C S, FU Q, et al.. Solution-processable small molecules as efficient universal bipolar host for blue, green and red phosphorescent inverted OLEDs[J].J. Mater. Chem., 2012, 22(11):5164-5170.
YEOH K H, TALIK N A, WHITCHER T J, et al.. The efficiency enhancement of single-layer solution-processed blue phosphorescent organic light emitting diodes by hole injection layer modification[J].J. Phys. D:Appl. Phys., 2014, 47(20):205103.
YIP H L, HAU S K, BAEK N S, et al.. Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells[J].Appl. Phys. Lett., 2008, 92(19):193313-1-3.
SUN Y M, SEO J H, TAKACS C J, et al.. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer[J].Adv. Mater., 2011, 23(14):1679-1683.
LEE H, PARK I, KWAK J, et al.. Improvement of electron injection in inverted bottom-emission blue phosphorescent organic light emitting diodes using zinc oxide nanoparticles[J].Appl. Phys. Lett., 2010, 96(15):153306-1-3.
POURRAHIMI A M, HOANG T A, LIU D M, et al.. Highly efficient interfaces in nanocomposites based on polyethylene and ZnO nano/hierarchical particles:a novel approach toward ultralow electrical conductivity insulations[J].Adv. Mater., 2016, 28(39):8651-8657.
MORII K, ISHIDA M, TAKASHIMA T, et al.. Encapsulation-free hybrid organic-inorganic light-emitting diodes[J].Appl. Phys. Lett., 2006, 89:183510.
CASTAN A, KIM H M, JANG J. All-solution-processed inverted quantum-dot light-emitting diodes[J].ACS Appl. Mater. Interfaces, 2014, 6(4):2508-2515.
HÖEFLE S, SCHIENLE A, BRUNS M, et al.. Enhanced electron injection into inverted polymer light-emitting diodes by combined solution-processed zinc oxide/polyethylenimine interlayers[J].Adv. Mater., 2014, 26(17):2750-2754.
KIM Y H, HAN T H, CHO H, et al.. Polyethylene imine as an ideal interlayer for highly efficient inverted polymer light-emitting diodes[J].Adv. Funct. Mater., 2014, 24(24):3808-3814.
Design and Performance of Quantum Dot Light-emitting Diode Based on TiO2 Modified Layer
Effect of Interfacial Modification for TiO2-based Planar Perovskite Solar Cells Using NaTFSI
Research Progress of Metal Oxide Electron Transporting Materials Applied in Perovskite Solar Cells
Influence of PVA Insulator Modified with Cross-linked PMMA on The Performance of P3HT OFETs
Related Author
No data
Related Institution
Department of Physics and Electronic Engineering, Yancheng Teachers University
Engineering Research Center of Environment-friendly Functional Materials, Ministry of Education, Fujian Key Laboratory of Photoelectric Functional Materials, Institute of Materials Physical Chemistry, College of Materials Science and Engineering, Huaqiao University
School of Material Science and Engineering, Hebei University of Technology
Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University,,, MS
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University