浏览全部资源
扫码关注微信
1.福州大学先进制造学院, 福建 泉州 362251
2.泉州师范学院光子技术研究院 福建省先进微纳光子技术与器件重点实验室, 福建省超精密光学工程技术与应用协同创新中心, 福建 泉州 362000
3.泉州师范学院 化工与材料学院, 福建 泉州 362000
4.泉州师范学院 物理与信息工程学院, 福建 泉州 362000
5.福建师范大学 光电与信息工程学院, 福建 福州 350117
Received:29 December 2024,
Revised:08 January 2025,
Published:25 April 2025
移动端阅览
文超,陈茜羽,卢颖婕等.双分子钝化埋底界面制备高效钙钛矿太阳能电池[J].发光学报,2025,46(04):721-729.
WEN Chao,CHEN Qianyu,LU Yingjie,et al.Bimolecularly Passivated Buried Interface for Highly Efficient Perovskite Solar Cells[J].Chinese Journal of Luminescence,2025,46(04):721-729.
文超,陈茜羽,卢颖婕等.双分子钝化埋底界面制备高效钙钛矿太阳能电池[J].发光学报,2025,46(04):721-729. DOI: 10.37188/CJL.20240350. CSTR: 32170. 14. CJL. 20240350.
WEN Chao,CHEN Qianyu,LU Yingjie,et al.Bimolecularly Passivated Buried Interface for Highly Efficient Perovskite Solar Cells[J].Chinese Journal of Luminescence,2025,46(04):721-729. DOI: 10.37188/CJL.20240350. CSTR: 32170. 14. CJL. 20240350.
钙钛矿太阳能电池(PSCs)的电子收集特性是影响器件性能的关键因素之一。化学浴沉积法制备的二氧化锡(SnO
2
)是PSCs常见的电子传输层材料,但是,其表面常存在大量氧空位缺陷,在SnO
2
/钙钛矿埋底界面处造成非辐射复合损失。本文利用四氯化锡(SnCl
4
)和铬酸铵((NH
4
)
2
CrO
4
)双分子钝化PSCs埋底界面,成功制备了光电转换效率达到23.71%的器件。SnCl
4
水解后在SnO
2
薄膜上生成小尺寸的SnO
2
颗粒,形成平整的表面结构;(NH
4
)
2
CrO
4
作为氧化剂,产生p型半导体Cr
2
O
3
超薄层,与SnO
2
构成p-n结,补偿SnO
2
表面多余的氧空位,减少埋底界面处的非辐射复合,提高电荷的提取效率。同时,在双分子钝化的SnO
2
上制备的钙钛矿薄膜晶粒尺寸增大,缺陷密度降低。
Electron extraction property is one of the important issues that limited the performance of perovskite solar cells (PSCs). SnO
2
electron transport layer fabricated with a chemical bath deposition method has been suc-cessful used in PSCs. However, it usually has a large number of oxygen vacancies at its surface, which would act as nonradiative recombination centers at the SnO
2
/perovskite buried interface. Herein, a SnCl
4
and
(NH
4
)
2
CrO
4
bimolecularly passivated buried interface strategy is adopted in PSCs, and the device shows a power conversion efficiency of 23.71%. The hydrolysis of SnCl
4
forms a layer of small SnO
2
nanoparticles on the surface SnO
2
, resulting in a smooth surface. (NH
4
)
2
CrO
4
acts as an oxidizer and forms a thin layer of p-type semiconductor Cr
2
O
3
on n-type SnO
2
.
Such p-n heterojunctions compensate the oxygen vacancies on SnO
2
surface, which decreases the nonradiative recombination at the buried interface and hence increases the electron extraction efficiency. Meanwhile, the perovskite film deposited on the bimolecularly passivated SnO
2
exhibits increased grain size, leading to decreased concentration of defects.
KOJIMA A , TESHIMA K , SHIRAI Y , et al . Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc. , 2009 , 131 ( 17 ): 6050 - 6051 . doi: 10.1021/ja809598r http://dx.doi.org/10.1021/ja809598r
FENG S C , SHEN Y , HU X M , et al . Efficient and stable red perovskite light-emitting diodes via thermodynamic crystallization control [J]. Adv. Mater. , 2024 , 36 ( 44 ): 2410255 . doi: 10.1002/adma.202410255 http://dx.doi.org/10.1002/adma.202410255
LIU D Y , KELLY T L . Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques [J]. Nat. Photon. , 2014 , 8 ( 2 ): 133 - 138 . doi: 10.1038/nphoton.2013.342 http://dx.doi.org/10.1038/nphoton.2013.342
WANG T Y , DAIBER B , FROST J M , et al . Indirect to direct bandgap transition in methylammonium lead halide perovskite [J]. Energy Environ. Sci. , 2017 , 10 ( 2 ): 509 - 515 . doi: 10.1039/c6ee03474h http://dx.doi.org/10.1039/c6ee03474h
YOO J J , SEO G , CHUA M R , et al . Efficient perovskite solar cells via improved carrier management [J]. Nature , 2021 , 590 ( 7847 ): 587 - 593 . doi: 10.1038/s41586-021-03285-w http://dx.doi.org/10.1038/s41586-021-03285-w
BAI J L , WANG H B , MA J P , et al . Wafer-scale patterning integration of chiral 3D perovskite single crystals toward high-performance full-Stokes polarimeter [J]. J. Am. Chem. Soc. , 2024 , 146 ( 27 ): 18771 - 18780 . doi: 10.1021/jacs.4c06822 http://dx.doi.org/10.1021/jacs.4c06822
CHEN H , LIU C , XU J , et al . Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands [J]. Science , 2024 , 384 ( 6692 ): 189 - 193 . doi: 10.1126/science.adm9474 http://dx.doi.org/10.1126/science.adm9474
LIU S W , LI J B , XIAO W S , et al . Buried interface molecular hybrid for inverted perovskite solar cells [J]. Nature , 2024 , 632 ( 8025 ): 536 - 542 . doi: 10.1038/s41586-024-07723-3 http://dx.doi.org/10.1038/s41586-024-07723-3
侯显 , 刘金龙 , 许鹤 , 等 . 多功能乳清酸钝化协助制备高效稳定的钙钛矿太阳能电池 [J]. 发光学报 , 2024 , 45 ( 8 ): 1364 - 1370 .
HOU X , LIU J L , XU H , et al . Multifunctional orotic acid passivation for efficient and stable perovskite solar cells [J]. Chin. J. Lumin. , 2024 , 45 ( 8 ): 1364 - 1370 . (in Chinese)
WEN C , WANG L D , LIU J P , et al . Synergistic passivation and iodine management enable enhanced efficiency and stability in binary passivated perovskite solar cells [J]. Chem. Eng. J. , 2024 , 500 : 156985 . doi: 10.1016/j.cej.2024.156985 http://dx.doi.org/10.1016/j.cej.2024.156985
LIAO C H , YUAN L G , ZHANG Y H , et al . High glass transition temperature dopant-free hole transport material via D-A-π-A-D-strategy for perovskite solar cell [J]. Rare Met. , 2024 , 43 ( 12 ): 6373 - 6383 . doi: 10.1007/s12598-024-02881-9 http://dx.doi.org/10.1007/s12598-024-02881-9
LIU B Y , YANG H M , ZUO Y D , et al . Intermediate phase-assisted growth of CsPbBr 3 for high performance of carbon-based perovskite solar cells [J]. Rare Met. , 2024 , 43 ( 5 ): 2222 - 2229 . doi: 10.1007/s12598-023-02578-5 http://dx.doi.org/10.1007/s12598-023-02578-5
ZHU Y Q , HU M , XU M , et al . Bilayer metal halide perovskite for efficient and stable solar cells and modules [J]. Mater. Futures , 2022 , 1 ( 4 ): 042102 . doi: 10.1088/2752-5724/ac9248 http://dx.doi.org/10.1088/2752-5724/ac9248
GAO Z W , WANG Y , CHOY W C H . Buried interface modification in perovskite solar cells: a materials perspective [J]. Adv. Energy Mater. , 2022 , 12 ( 20 ): 2104030 . doi: 10.1002/aenm.202104030 http://dx.doi.org/10.1002/aenm.202104030
WU S F , ZHANG J , LI Z , et al . Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells [J]. Joule , 2020 , 4 ( 6 ): 1248 - 1262 . doi: 10.1016/j.joule.2020.04.001 http://dx.doi.org/10.1016/j.joule.2020.04.001
LI Q Y , LIU H , HOU C H , et al . Harmonizing the bilateral bond strength of the interfacial molecule in perovskite solar cells [J]. Nat. Energy , 2024 , 9 ( 12 ): 1506 - 1516 . doi: 10.1038/s41560-024-01642-3 http://dx.doi.org/10.1038/s41560-024-01642-3
陈中良 , 胡文涛 , 王雪璐 , 等 . 埋底界面修饰实现高效稳定钙钛矿太阳能电池 [J]. 发光学报 , 2024 , 45 ( 6 ): 996 - 1004 . doi: 10.37188/cjl.20240053 http://dx.doi.org/10.37188/cjl.20240053
CHEN Z L , HU W T , WANG X L , et al . Efficient and stable perovskite solar cells achieved by subsurface interface modification [J]. Chin. J. Lumin. , 2024 , 45 ( 6 ): 996 - 1004 . (in Chinese) . doi: 10.37188/cjl.20240053 http://dx.doi.org/10.37188/cjl.20240053
张康杰 , 闫伟博 , 辛颢 . 苯乙胺钝化钙钛矿埋底界面提高太阳能电池性能 [J]. 发光学报 , 2023 , 44 ( 9 ): 1636 - 1643 .
ZHANG K J , YAN W B , XIN H , et al . Passivation of perovskite buried-interface using phenethylamine for enhanced solar cell performance [J]. Chin. J. Lumin. , 2023 , 44 ( 9 ): 1636 - 1643 . (in Chinese)
KO Y , KIM Y , LEE C , et al . Self-aggregation-controlled rapid chemical bath deposition of SnO 2 layers and stable dark depolarization process for highly efficient planar perovskite solar cells [J]. ChemSusChem , 2020 , 13 ( 16 ): 4051 - 4063 . doi: 10.1002/cssc.202000501 http://dx.doi.org/10.1002/cssc.202000501
LU Y L , SHIH M C , TAN S , et al . Rational design of a chemical bath deposition based tin oxide electron-transport layer for perovskite photovoltaics [J]. Adv. Mater. , 2023 , 35 ( 45 ): 2304168 . doi: 10.1002/adma.202304168 http://dx.doi.org/10.1002/adma.202304168
JIANG Q , ZHANG L Q , WANG H L , et al . Enhanced electron extraction using SnO 2 for high-efficiency planar-structure HC(NH 2 ) 2 PbI 3 -based perovskite solar cells [J]. Nat. Energy , 2017 , 2 ( 1 ): 16177 . doi: 10.1038/nenergy.2017.60 http://dx.doi.org/10.1038/nenergy.2017.60
WU Z Y , SU J Z , CHAI N Y , et al . Periodic acid modification of chemical-bath deposited SnO 2 electron transport layers for perovskite solar cells and mini modules [J]. Adv. Sci. (Weinh) , 2023 , 10 ( 20 ): 2300010 . doi: 10.1002/advs.202300010 http://dx.doi.org/10.1002/advs.202300010
TONG G Q , ONO L K , LIU Y Q , et al . Up-scalable fabrication of SnO 2 with multifunctional interface for hi gh performance perovskite solar modules [J]. Nano-Micro Lett. , 2021 , 13 ( 1 ): 155 . doi: 10.1007/s40820-021-00675-7 http://dx.doi.org/10.1007/s40820-021-00675-7
ZHAO Q Q , ZHANG B Q , HUI W , et al . Oxygen vacancy mediation in SnO 2 electron transport layers enables efficient, stable, and scalable perovskite solar cells [J]. J. Am. Chem. Soc. , 2024 , 146 ( 28 ): 19108 - 19117 . doi: 10.1021/jacs.4c03783 http://dx.doi.org/10.1021/jacs.4c03783
JEON Y S , KANG D H , KIM J H , et al . Stability and efficiency improvement of perovskite solar cells by surface hydroxyl defect passivation of SnO 2 layer with 4-fluorothiophenol [J]. J. Mater. Chem. A , 2023 , 11 ( 7 ): 3673 - 3681 . doi: 10.1039/d2ta08488k http://dx.doi.org/10.1039/d2ta08488k
XIONG Z , CHEN X , ZHANG B , et al . Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4% [J]. Adv. Mater. , 2022 , 34 ( 8 ): 2106118 . doi: 10.1002/adma.202106118 http://dx.doi.org/10.1002/adma.202106118
QIN Z X , CHEN Y T , WANG X T , et al . Zwitterion-functionalized SnO 2 substrate induced sequential deposition of black-phase FAPbI 3 with rearranged PbI 2 residue [J]. Adv. Mater. , 2022 , 34 ( 32 ): 2203143 . doi: 10.1002/adma.202203143 http://dx.doi.org/10.1002/adma.202203143
GUO H D , XIANG W C , FANG Y Y , et al . Molecular bridge on buried interface for efficient and stable perovskite solar cells [J]. Angew. Chem. Int. Ed. , 2023 , 62 ( 34 ): e202304568 . doi: 10.1002/anie.202304568 http://dx.doi.org/10.1002/anie.202304568
YANG L , FENG J S , LIU Z K , et al . Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation [J]. Adv. Mater. , 2022 , 34 ( 24 ): 2201681 . doi: 10.1002/adma.202201681 http://dx.doi.org/10.1002/adma.202201681
LIU C , YANG Y , CHEN H , et al . Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells [J]. Science , 2023 , 382 ( 6672 ): 810 - 815 . doi: 10.1126/science.adk1633 http://dx.doi.org/10.1126/science.adk1633
YANG Y , CHEN H , LIU C , et al . Amidination of ligands for chemical and field-effect passivation stabilizes perovskite solar cells [J]. Science , 2024 , 386 ( 6724 ): 898 - 902 . doi: 10.1126/science.adr2091 http://dx.doi.org/10.1126/science.adr2091
MA Y Y , LI F M , GONG J , et al . Bi-molecular kinetic competition for surface passivation in high-performance perovskite solar cells [J]. Energy Environ. Sci. , 2024 , 17 ( 4 ): 1570 - 1579 . doi: 10.1039/d3ee03439a http://dx.doi.org/10.1039/d3ee03439a
SONG J W , SHIN Y S , KIM M , et al . Post-treated polycrystalline SnO 2 in perovskite solar cells for high efficiency and quasi-steady-state-IV stability [J]. Adv. Energy Mater. , 2024 , 14 ( 38 ): 2401753 . doi: 10.1002/aenm.202401753 http://dx.doi.org/10.1002/aenm.202401753
LIU M C , WANG Y Y , LU C X , et al . Localized oxidation embellishing strategy enables high-performance perovskite solar cells [J]. Angew. Chem. Int. Ed. , 2024 , 63 ( 10 ): e202318621 . doi: 10.1002/anie.202404166 http://dx.doi.org/10.1002/anie.202404166
ZHU X J , XU Z , ZUO S N , et al . Vapor-fumigation for record efficiency two-dimensional perovskite solar cells with superior stability [J]. Energy Environ. Sci. , 2018 , 11 ( 12 ): 3349 - 3357 . doi: 10.1039/c8ee02284d http://dx.doi.org/10.1039/c8ee02284d
DENG J D , ZHANG H F , WEI K , et al . Molecular bridge assisted bifacial defect healing enables low energy loss for efficient and stable perovskite solar cells [J]. Adv. Funct. Mater. , 2022 , 32 ( 52 ): 2209516 . doi: 10.1002/adfm.202209516 http://dx.doi.org/10.1002/adfm.202209516
ANARAKI E H , KERMANPUR A , STEIER L , et al . Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide [J]. Energy Environ. Sci. , 2016 , 9 ( 10 ): 3128 - 3134 . doi: 10.1039/c6ee02390h http://dx.doi.org/10.1039/c6ee02390h
0
Views
64
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution