浏览全部资源
扫码关注微信
1.安徽工程大学 高端装备先进感知与智能控制教育部重点实验室, 安徽 芜湖 241000
2.安徽工程大学 电气工程学院, 安徽 芜湖 241000
3.北京大学物理学院 宽禁带半导体研究中心, 北京 100871
4.安徽工程大学 外国语学院, 安徽 芜湖 241000
[ "鲁麟(1980-), 男, 安徽芜湖人, 博士后, 教授, 硕士研究生导师, 2009年于北京大学获得博士学位, 主要从事Ⅲ-Ⅴ族宽禁带半导体光电子材料及器件的研究。E-mail:llu-wh@qq.com" ]
纸质出版日期:2020-06,
收稿日期:2020-03-18,
录用日期:2020-4-6
移动端阅览
鲁麟, 郎艺, 许福军, 等. 不规则H形量子势垒增强AlGaN基深紫外发光二极管性能[J]. 发光学报, 2020,41(6):714-718.
LIN LU, YI LANG, FU-JUN XU, et al. Performance Enhancement of AlGaN-based Deep-ultraviolet Light Emitting Diodes by Employing Irregular H-shaped Quantum Barriers. [J]. Chinese journal of luminescence, 2020, 41(6): 714-718.
鲁麟, 郎艺, 许福军, 等. 不规则H形量子势垒增强AlGaN基深紫外发光二极管性能[J]. 发光学报, 2020,41(6):714-718. DOI: 10.3788/fgxb20204106.0714.
LIN LU, YI LANG, FU-JUN XU, et al. Performance Enhancement of AlGaN-based Deep-ultraviolet Light Emitting Diodes by Employing Irregular H-shaped Quantum Barriers. [J]. Chinese journal of luminescence, 2020, 41(6): 714-718. DOI: 10.3788/fgxb20204106.0714.
针对AlGaN基多量子阱中有效的平衡载流子注入问题,研究了有源区势垒层中Al组分调制形成的非规则H形量子势垒对AlGaN基深紫外发光二极管(LED)器件性能的影响及载流子的输运行为。研究发现,与多量子阱中常用的单Al组分势垒相比,加入Al组分较高的双尖峰势垒可以有效地提高内量子效率和光输出功率。进一步研究表明,电子在有源区因凸起的尖峰势垒而得到了有效的阻挡,减少了电子的泄露,而空穴获得更多的动能从而穿过较高的势垒进入有源区。因此,采用非对称H形量子势垒的深紫外LED器件中载流子输运实现了较好的平衡,量子阱中的载流子复合速率远高于普通的深紫外发光二极管。
AlGaN-based deep ultraviolet light-emitting diodes (DUV-LEDs) employing irregular H-shaped quantum barriers in the active region by modulating Al composition have been investigated. It has been found that the H-shaped quantum barriers by insertion of double spike barriers with higher Al composition can effectively improve both the internal quantum efficiency (IQE) and light output power (LOP) compared to commonly adopted single-Al-composition barrier for AlGaN multiple quantum wells (MQWs). It is verified that electrons in the active region are effectively blocked by the raised barriers
while holes can gain more kinetic energy to cross the barrier height and then be injected into the active region. Thus the carrier recombination rate in the DUV-LEDs adopting the H-shaped quantum barriers can prevail much over the conventional one.
AlGaN深紫外发光二极管量子势垒
AlGaNdeep ultraviolet light-emitting diodesquantum barrier
KNEISSL M, SEONG T Y, HAN J, et al.. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J].Nat. Photonics, 2019, 13(4):233-244.
HEC Y, WU Q, WANG X Z, et al.. Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range[J].ACS Nano, 2011, 5(2):1291-1296.
HIRAYAMA H, FUJIKAWA S, KAMATA N. Recent progress in AlGaN-based deep-UV LEDs[J].Electron. Commun. Jpn., 2015, 98(5):1-8.
李世彬, 肖战菲, 苏元捷, 等.极化诱导实现AlGaN薄膜材料中的超高电子浓度(1020 cm-3)掺杂[J].物理学报, 2012, 61(16):163701-1-6.
LI S B, XIAO Z F, SU Y J, et al.. Polarization induced ultra-high electron concentration up to 1020 cm-3 in graded AlGaN[J].Acta Phys. Sinica, 2012, 61(16):163701-1-6. (in Chinese)
KARMALKAR S, SATHAIYA D M, SHUR M S. Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors[J]. Appl. Phys. Lett., 2003, 82(22):3976-3978.
QIN P, SONG W D, HU W X, et al.. Improved performance of near UV light-emitting diodes with a composition-graded p-AlGaN irregular sawtooth electron-blocking layer[J].Chin. Phys. B, 2016, 25(8):088505-1-5.
ZHAO Y K, YUN F, WANG S, et al.. Mechanism of hole injection enhancement in light-emitting diodes by inserting multiple hole-reservoir layers in electron blocking layer[J].J. Appl. Phys., 2016, 119(10):105703.
SHEVCHENKO E A, NECHAEV D V, JMERIK V N, et al.. Enhanced photoluminescence efficiency in AlGaN quantum wells with gradient-composition AlGaN barriers[J].J. Phys.:Conf. Ser., 2016, 741(1):012118-1-5.
GUO WW, XU F J, SUN Y H, et al.. Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes by inserting single spike barriers[J].Superlattices Microstruct., 2016, 100:941-946.
ZHANG C, SUN H Q, LI X N,et al.. Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes with double electron blocking layers[J].Chin. Phys. B, 2015, 25(2):028501.
CROSSLIGHT SOFTWARE INC. Crosslight APSYS software[EB/OL].[2020-03-10]. https://crosslight.com/products/apsys/.
LANG J, XU F J, GE W K, et al.. High performance of AlGaN deep-ultraviolet light emitting diodes due to improved vertical carrier transport by delta-accelerating quantum barriers[J].Appl. Phys. Lett., 2019, 114(17):172105-1-5.
LU L, ZHANG Y, XU F J, et al.. Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via Al-composition graded quantum wells[J].Superlattices Microstruct., 2018, 118:55-60.
LANG J, XU F J, GE W K, et al.. Greatly enhanced performance of AlGaN-based deep ultraviolet light emitting diodes by introducing a polarization modulated electron blocking layer[J].Opt. Express, 2019, 27(20):A1458-A1466.
WEI S H, ZUNGER A. Valence band splittings and band offsets of AlN, GaN, and InN[J].Appl. Phys. Lett., 1996, 69(18):2719-2721.
SHISHEHCHI S, ASGARI A, KHERADMAND R. The effect of temperature on the recombination rate of AlGaN/GaN light emitting diodes[J].Opt. Quant. Electron., 2009, 41(7):525-530.
FIORENTINI V, BERNARDINI F, SALA F D, et al.. Effects of macroscopic polarization in Ⅲ-Ⅴ nitride multiple quantum wells[J].Phys. Rev. B, 1999, 60(12):8849-8858.
0
浏览量
154
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构