1.北京理工大学材料学院 工信部低维量子结构与器件重点实验室, 北京 100081
2.邯郸学院 化学化工与材料学院, 河北 邯郸 056005
[ "张小丽(1992-),女,山东聊城人,硕士研究生,2016年于聊城大学材料科学与工程学院获得学士学位,主要从事量子点材料合成方面的研究。E-mail:zxl8021@163.com" ]
[ " 李冬(1983-),男,河北威县人,博士,副教授,2018年于北京师范大学获得博士学位,主要从事量子点材料合成及其光电应用方面的研究。E-mail: beikehanmu1108@163.com" ]
[ " 钟海政(1981-),男,河北清河人,博士,教授,博士研究生导师,2008年于中国科学院化学研究所获得博士学位,主要从事光学与光电子材料的研究。E-mail:hzzhong@bit.edu.cn " ]
扫 描 看 全 文
张小丽, 王雷, 李冬, 等. 硒化铅核壳量子点的合成与应用研究进展[J]. 发光学报, 2020,41(6):631-645.
Xiao-li ZHANG, Lei WANG, Dong LI, et al. PbSe Based Core/Shell Quantum Dots: from Colloidal Synthesis to Optoelectronic Application[J]. Chinese Journal of Luminescence, 2020,41(6):631-645.
张小丽, 王雷, 李冬, 等. 硒化铅核壳量子点的合成与应用研究进展[J]. 发光学报, 2020,41(6):631-645. DOI: 10.3788/fgxb20204106.0631.
Xiao-li ZHANG, Lei WANG, Dong LI, et al. PbSe Based Core/Shell Quantum Dots: from Colloidal Synthesis to Optoelectronic Application[J]. Chinese Journal of Luminescence, 2020,41(6):631-645. DOI: 10.3788/fgxb20204106.0631.
硒化铅(PbSe)量子点具有宽红外光谱调控范围、高荧光量子产率和可溶液加工等特点,成为一类重要的红外材料体系。与广泛研究的PbS量子点相比,PbSe量子点在空气中容易氧化,从而严重破坏其光电特性,制约了其应用的发展。壳层的包覆是有效提升PbSe量子点光学特性和化学稳定性的策略之一,是推动PbSe量子点应用发展的材料研究方向。本文综述了PbSe核壳量子点的合成及其在光电探测、太阳能电池、激光器和光催化等领域的应用研究进展,希望能够为国内研究者开展相关研究提供参考。
PbSe quantum dots have attracted a great number of attentions due to their tunable bandgap in a wide range, high photoluminescence quantum yields and low-cost solution process, thus enabling them the potential as key functional materials in infrared region. However, PbSe quantum dots are sensitive to air, resulting in the decrease or even destroy of their optical properties. Overcoating of PbSe quantum dots by a suitable shell, yielding PbSe-based core/shell quantum dots, have been successfully demonstrated to be an effective strategy to improve the chemical stability and optical properties. In this mini-review paper, we summarized the progress of colloidal synthesis methods of PbSe-based core/shell quantum dots and their optoelectronic applications in photodetectors, solar cells, lasers and photocatalysis. We hope the review can attract the attention from both of the industrial and academic researchers.
硒化铅量子点核壳结构红外光电
PbSequantum dotscore/shellinfraredoptoelectronics
LU H P, CARROLL G M, NEALE N R, et al.. Infrared quantum dots:progress, challenges, and opportunities[J].ACS Nano, 2019, 13(2):939-953.
ACKERMAN M M, TANG X, GUYOT-SIONNEST P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors[J].ACS Nano, 2018, 12(7):7264-7271.
SARGENT E H. Solar cells, photodetectors, and optical sources from infrared colloidal quantum dots[J].Adv. Mater., 2008, 20(20):3958-3964.
严金华, 徐帅锋, 沈旭辉, 等.基于PbSe量子点的全光纤光功率密度和温度传感器[J].激光与光电子学进展, 2018, 55(10):100602-1-4.
YAN J H, XU S F, SHEN X H, et al.. All fiber-optic sensor measuring optical power density and temperature based on PbSe quantum dots[J].Laser Optoelectron. Prog., 2018, 55(10):100602-1-4. (in Chinese)
LI M, LUO J T, FU C, et al.. PbSe quantum dots-based chemiresistors for room-temperature NO2 detection[J].Sens. Actuators B: Chem., 2018, 256:1045-1056.
HEMATI T, ZHANG X T, WENG B B. Towards a low-cost on-chip mid-IR gas sensing solution: chemical synthesis of lead-salt photonic materials[C].Proceedings of SPIE Smart Photonic and Optoelectronic Integrated Circuits ⅩⅫ, San Francisco, California, United States, 2020: 1128418.
RUDDY D A, JOHNSON J C, SMITH E R, et al.. Size and bandgap control in the solution-phase synthesis of near-infrared-emitting germanium nanocrystals[J].ACS Nano, 2010, 4(12):7459-7466.
HENDRICKS M P, CAMPOS M P, CLEVELAND G T, et al.. A tunable library of substituted thiourea precursors to metal sulfide nanocrystals[J].Science, 2015, 348(6240):1226-1230.
YANOVER D, ČAPEK R K, RUBIN-BRUSILOVSKI A, et al.. Small-sized PbSe/PbS core/shell colloidal quantum dots[J].Chem. Mater., 2012, 24(22):4417-4423.
PIETRYGA J M, SCHALLER R D, WERDER D, et al.. Pushing the band gap envelope:mid-infrared emitting colloidal PbSe quantum dots[J].J. Am. Chem. Soc., 2004, 126(38):11752-11753.
MURPHY J E, BEARD M C, NORMAN A G, et al.. PbTe colloidal nanocrystals:synthesis, characterization, and multiple exciton generation[J].J. Am. Chem. Soc., 2006, 128(10):3241-3247.
TANG X, WU G F, LAI K W C. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared[J].J. Mater. Chem. C, 2017, 5(2):362-369.
KEULEYAN S, LHUILLIER E, GUYOT-SIONNEST P. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and Detection[J].J. Am. Chem. Soc., 2011, 133(41):16422-16424.
SERGEEV A A, PAVLOV D V, KUCHMIZHAK A A, et al.. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays[J].Light Sci. Appl., 2020, 9:16-1-10.
JIANG P, TIAN Z Q, ZHU C N, et al.. Emission-tunable near-infrared Ag2S quantum dots[J].Chem. Mater., 2012, 24(1):3-5.
ZHU C N, JIANG P, ZHANG Z L, et al.. Ag2Se quantum dots with tunable emission in the second near-infrared window[J].ACS Appl. Mater. Interfaces, 2013, 5(4):1186-1189.
YANG M, GUI R J, JIN H, et al.. Ag2Te quantum dots with compact surface coatings of multivalent polymers:ambient one-pot aqueous synthesis and the second near-infrared bioimaging[J].Colloids Surf. B:Biointerfaces, 2015, 126:115-120.
SRIVASTAVA V, JANKE E M, DIROLL B T, et al.. Facile, economic and size-tunable synthesis of metal arsenide nanocrystals[J].Chem. Mater., 2016, 28(18):6797-6802.
CHANG A Y, LIU W Y, TALAPIN D V, et al.. Carrier dynamics in highly quantum-confined, colloidal indium antimonide nanocrystals[J].ACS Nano, 2014, 8(8):8513-8519.
HARRIS D K, ALLEN P M, HAN H S, et al.. Synthesis of cadmium arsenide quantum dots luminescent in the infrared[J].J. Am. Chem. Soc., 2011, 133(13):4676-4679.
MIAO S D, HICKEY S G, RELLINGHAUS B, et al.. Synthesis and characterization of cadmium phosphide quantum dots emitting in the visible red to near-infrared[J].J. Am. Chem. Soc., 2010, 132(16):5613-5615.
XU Y, AL-SALIM N, HODGKISS J M, et al.. Solution synthesis and optical properties of SnTe nanocrystals[J].Cryst. Growth Des., 2011, 11(7):2721-2723.
中华人民共和国生态环境部, 国家市场监督管理总局. GB 15618-2018土壤环境质量农用地土壤污染风险管控标准(试行)[S].北京: 中国标准出版社, 2018.
Ministry of Ecology and Environment of The People's Republic of China, State Administration for Market Regulation. GB 15618-2018Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land[S]. Beijing: China Standard Press, 2018. (in Chinese)
SHUKLOV I A, RAZUMOV V F. Lead chalcogenide quantum dots for photoelectric devices[J].Russ. Chem. Rev., 2020, 89(3):379-391.
ABELSON A, QIAN C, SALK T, et al.. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice[J].Nat. Mater., 2020, 19(1):49-55.
SCHALLER R D, KLIMOV V I. High efficiency carrier multiplication in PbSe nanocrystals:implications for solar energy conversion[J].Phys. Rev. Lett., 2004, 92(18):186601-1-4.
YU W W, FALKNER J C, SHIH B S, et al.. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent[J].Chem. Mater., 2004, 16(17):3318-3322.
ALLAN G, DELERUE C. Role of impact ionization in multiple exciton generation in PbSe nanocrystals[J].Phys. Rev. B, 2006, 73(20):205423.
DAI Q Q, WANG Y N, ZHANG Y, et al.. Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure[J].Langmuir, 2009, 25(20):12320-12324.
STOUWDAM J W, SHAN J N, VAN VEGGEL F C J M, et al.. Photostability of colloidal PbSe and PbSe/PbS core/shell nanocrystals in solution and in the solid state[J].J. Phys. Chem. C, 2007, 111(3):1086-1092.
ZHANG J B, GAO J B, MILLER E M, et al.. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells[J].ACS Nano, 2014, 8(1):614-622.
WOO J Y, KO J H, SONG J H, et al.. Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe (100)[J].J. Am. Chem. Soc., 2014, 136(25):8883-8886.
LIAN L Y, XIA Y, ZHANG C W, et al.. In situ tuning the reactivity of selenium precursor to synthesize wide range size, ultralarge-scale, and ultrastable PbSe quantum dots[J].Chem. Mater., 2018, 30(3):982-989.
ZHANG J B, GAO J B, CHURCH C P, et al.. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere[J].Nano Lett., 2014, 14(10):6010-6015.
ZAIATS G, SHAPIRO A, YANOVER D, et al.. Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots[J].J. Phys. Chem. Lett., 2015, 6(13):2444-2448.
ABEL K A, QIAO H J, YOUNG J F, et al.. Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots[J].J. Phys. Chem. Lett., 2010, 1(15):2334-2338.
ZAIATS G, YANOVER D, VAXENBURG R, et al.. PbSe/CdSe thin-shell colloidal quantum dots[J].Z. Phys. Chem., 2015, 229(1-2):3-21.
PIETRYGA J M, WERDER D J, WILLIAMS D J, et al.. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission[J].J. Am. Chem. Soc., 2008, 130(14):4879-4885.
HANSON C J, HARTMANN N F, SINGH A, et al.. Giant PbSe/CdSe/CdSe quantum dots:crystal-structure-defined ultrastable near-infrared photoluminescence from single nanocrystals[J].J. Am. Chem. Soc., 2017, 139(32):11081-11088.
LIFSHITZ E, BRUMER M, KIGEL A, et al.. Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications[J].J. Phys. Chem. B, 2006, 110(50):25356-25365.
SARAVANAMOORTHY S N, PETER A J, LEE C W. Optical properties of type-Ⅰ PbSe/CdSe core/shell quantum dot[J].Phys. B: Condens. Matter, 2015, 466-467:101-106.
GRODZIŃSKA D, PIETRA F, VAN HUIS M A, et al.. Thermally induced atomic reconstruction of PbSe/CdSe core/shell quantum dots into PbSe/CdSe bi-hemisphere hetero-nanocrystals[J].J. Mater. Chem., 2011, 21(31):11556-11565.
GRODZIŃSKA D, EVERS W H, DORLAND R, et al.. Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots[J].Small, 2011, 7(24):3493-3501.
BRUMER M, KIGEL A, AMIRAV L, et al.. PbSe/PbS and PbSe/PbSexS1-x core/shell nanocrystals[J].Adv. Funct. Mater., 2005, 15(17):1111-1116.
SHAN J, VAN VEGGEL F C J M, RAUDSEPP M, et al.. Highly photo-stable type-Ⅰ PbSe/SnSe and PbSe/SnS colloidal core/shell quantum dots[J].Tech. Briefs, 2006, 3:125-128.
SENTHIL A, REYMATIAS M V, ALAS G J, et al.. Synthesis and characterization of near-infrared PbSe/SnS colloidal core-shell quantum dots[C].Proceedings of SPIE Colloidal Nanoparticles for Biomedical Applications XV, San Francisco, California, United States, 2020: 1125508.
ZHANG Y, DAI Q Q, LI X B, et al.. Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission[J].Nanoscale Res. Lett., 2010, 5(8):1279-1283.
MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE(E=sulfur, selenium, tellurium) semiconductor nanocrystallites[J].J. Am. Chem. Soc., 1993, 115(19):8706-8715.
MURRAY C B, SUN S H, GASCHLER W, et al.. Colloidal synthesis of nanocrystals and nanocrystal superlattices[J].IBM J. Res. Dev., 2001, 45(1):47-56.
CHO K S, TALAPIN D V, GASCHLER W, et al.. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles[J].J. Am. Chem. Soc., 2005, 127(19):7140-7147.
KOH W K, BARTNIK A C, WISE F W, et al.. Synthesis of monodisperse PbSe nanorods:a case for oriented attachment[J].J. Am. Chem. Soc., 2010, 132(11):3909-3913.
KOH W K, YOON Y, MURRAY C B. Investigating the phosphine chemistry of Se precursors for the synthesis of PbSe nanorods[J].Chem. Mater., 2011, 23(7):1825-1829.
SON D H, HUGHES S M, YIN Y D, et al.. Cation exchange reactions in ionic nanocrystals[J].Science, 2004, 306(5698):1009-1012.
GALLE T, KHOSHKHOO M S, MARTIN-GARCIA B, et al.. Colloidal PbSe nanoplatelets of varied thickness with tunable optical properties[J].Chem. Mater., 2019, 31(10):3803-3811.
ZHANG C W, XIA Y, ZHANG Z M, et al.. Combination of cation exchange and quantized ostwald ripening for controlling size distribution of lead chalcogenide quantum dots[J].Chem. Mater., 2017, 29(8):3615-3622.
CASAVOLA M, VAN HUIS M A, BALS S, et al.. Anisotropic cation exchange in PbSe/CdSe core/shell nanocrystals of different geometry[J].Chem. Mater., 2012, 24(2):294-302.
ZHANG Y, DAI Q Q, LI X B, et al.. Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals[J].J. Nanopart. Res., 2011, 13(9):3721-3729.
ZHANG Y, DAI Q Q, LI X B, et al.. PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence[J].Langmuir, 2011, 27(15):9583-9587.
SASHCHIUK A, LANGOF L, CHAIM R, et al.. Synthesis and characterization of PbSe and PbSe/PbS core-shell colloidal nanocrystals[J].J. Cryst. Growth, 2002, 240(3-4):431-438.
YANOVER D, VAXENBURG R, TILCHIN J, et al.. Significance of small-sized PbSe/PbS core/shell colloidal quantum dots for optoelectronic applications[J].J. Phys. Chem. C, 2014, 118(30):17001-17009.
KIGEL A, BRUMER M, SASHCHIUK A, et al.. PbSe/PbSexS1-x core-alloyed shell nanocrystals[J].Mater. Sci. Eng. C, 2005, 25(5-8):604-608.
TALAPIN D V, YU H, SHEVCHENKO E V, et al.. Synthesis of colloidal PbSe/PbS core-shell nanowires and PbS/Au nanowire-nanocrystal heterostructures[J].J. Phys. Chem. C, 2007, 111(38):14049-14054.
PAK C, WOO J Y, LEE K, et al.. Extending the limit of low-energy photocatalysis:dye reduction with PbSe/CdSe/CdS core/shell/shell nanocrystals of varying morphologies under infrared irradiation[J].J. Phys. Chem. C, 2012, 116(48):25407-25414.
TU R Y, XIE Y, BERTONI G, et al.. Influence of the ion coordination number on cation exchange reactions with copper telluride nanocrystals[J].J. Am. Chem. Soc., 2016, 138(22):7082-7090.
JEONG U, XIA Y N. Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids[J].Angew. Chem. Int. Ed., 2005, 44(20):3099-3103.
ZHANG J T, DI Q M, LIU J, et al.. Heterovalent doping in colloidal semiconductor nanocrystals:cation-exchange-enabled new accesses to tuning dopant luminescence and electronic impurities[J].J. Phys. Chem. Lett., 2017, 8(19):4943-4953.
DE GEYTER B, HENS Z. The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots[J].Appl. Phys. Lett., 2010, 97(16):161908-1-3.
DE GEYTER B, JUSTO Y, MOREELS I,et al.. The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots[J].ACS Nano, 2011, 5(1):58-66.
MISHRA N, MUKHERJEE B, XING G, et al.. Cation exchange synthesis of uniform PbSe/PbS core/shell tetra-pods and their use as near-infrared photodetectors[J].Nanoscale, 2016, 8(29):14203-14212.
LI J J, WANG Y, GUO W Z, et al.. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction[J].J. Am. Chem. Soc., 2003, 125(41):12567-12575.
YANOVER D, RUBIN-BRUSILOVSKI A, CAPEK R K, et al.. Temperature-dependent recombination processes in small-sized PbSe/PbS core/shell colloidal quantum dots[J].Mater. Sci., 2014, 20(2):141-143.
GRINBOM G A, SARAF M, SAGUY C, et al.. Density of states in a single PbSe/PbS core-shell quantum dot measured by scanning tunneling spectroscopy[J].Phys. Rev. B, 2010, 81(24):245301.
RUBIN-BRUSILOVSKI A, JANG Y, SHAPIRO A, et al.. Influence of interfacial strain on optical properties of PbSe/PbS colloidal quantum dots[J].Chem. Mater., 2016, 28(24):9056-9063.
MAIKOV G I, KIGEL A, SASHCHIUK A, et al.. Emission processes in colloidal PbSe/PbS core-shell quantum dots[J].IOP Conf. Ser.:Mater. Sci. Eng., 2009, 6(1):012027-1-6.
CUI D H, XU J, PARADEE G, et al.. Developing PbSe/PbS core-shell nanocrystals quantum dots toward their potential heterojunction applications[J].J. Exp. Nanosci., 2007, 2(1-2):13-21.
LEE D C, ROBEL I, PIETRYGA J M, et al.. Infrared-active heterostructured nanocrystals with ultralong carrier lifetimes[J].J. Am. Chem. Soc., 2010, 132(29):9960-9962.
SEMONIN O E, LUTHER J M, CHOI S, et al.. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell[J].Science, 2011, 334(6063):1530-1533.
张梁, 孙强, 朱阳阳, 等. PbSe量子点调控的聚合物太阳能电池性能[J].发光学报, 2019, 40(10):1267-1273.
ZHANG L, SUN Q, ZHU Y Y, et al.. Improving performance of polymer solar cells by regulating PbSe quantum dots[J].Chin. J. Lumin., 2019, 40(10):1267-1273. (in Chinese)
ZHANG Z L, CHEN Z H, ZHANG J B, et al.. Significant improvement in the performance of PbSe quantum dot solar cell by introducing a CsPbBr3 perovskite colloidal nanocrystal back layer[J].Adv. Energy Mater., 2017, 7(5):1601773.
MA W L, SWISHER S L, EWERS T, et al.. Photovoltaic performance of ultrasmall PbSe quantum dots[J].ACS Nano, 2011, 5(10):8140-8147.
LESCHKIES K S, BEATTY T J, KANG M S, et al.. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films[J].ACS Nano, 2009, 3(11):3638-3648.
LI J Z, XU J, ZHAO L X, et al.. Preparation and characterization of CdSe and PbSe nanoparticles via aqueous solution for nanoparticle-based solar cells[J].Mater. Res. Bull., 2013, 48(4):1560-1568.
CHOI J J, LIM Y F, SANTIAGO-BERRIOS M B, et al.. PbSe nanocrystal excitonic solar cells[J].Nano Lett., 2009, 9(11):3749-3755.
ETGAR L, YANOVER D, CAPEK R K, et al.. Core/shell PbSe/PbS QDs TiO2 heterojunction solar cell[J].Adv. Funct. Mater., 2013, 23(21):2736-2741.
CHOI H, SONG J H, JANG J, et al.. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells:short circuit current enhancement without the loss of open circuit voltage by shell thickness control[J].Nanoscale, 2015, 7(41):17473-17481.
WANG T Y, WANG P, WANG H L, et al.. Solar cells of the inorganic materials based on PbSe/CdSe core/shell nanocrystals[J].Appl. Mech. Mater., 2015, 737:119-122.
WANG P, WANG T Y, WANG H L, et al.. Based on graphene electrodes PbSe/CdSe core-shell quantum dots battery[J].Appl. Mech. Mater., 2015, 737:88-91.
SARASQUETA G, CHOUDHURY K R, SO F. Effect of solvent treatment on solution-processed colloidal PbSe nanocrystal infrared photodetectors[J].Chem. Mater., 2010, 22(11):3496-3501.
FU C J, WANG H W, SONG T J, et al.. Stability enhancement of PbSe quantum dots via post-synthetic ammonium chloride treatment for a high-performance infrared photodetector[J].Nanotechnology, 2016, 27(6):065201.
YU Y, ZHANG Y T, ZHANG Z, et al.. Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction[J].J. Phys. Chem. Lett., 2017, 8(2):445-451.
DOLATYARI M, ROSTAMI A, MATHUR S, et al.. Trap engineering in solution processed PbSe quantum dots for high-speed MID-infrared photodetectors[J].J. Mater. Chem. C, 2019, 7(19):5658-5669.
SARASQUETA G, CHOUDHURY K R, SUBBIAH J, et al.. Organic and inorganic blocking layers for solution-processed colloidal PbSe nanocrystal infrared photodetectors[J].Adv. Funct. Mater., 2011, 21(1):167-171.
ZHU T, YANG Y R, ZHENG L Y, et al.. Solution-processed flexible broadband photodetectors with solution-processed transparent polymeric electrode[J].Adv. Funct. Mater., 2020, 30(15):1909487.
程成, 魏凯华. PbSe量子点光纤激光器的数值模拟[J].红外与激光工程, 2010, 39(5):815-818.
CHENG C, WEI K H. Numerical simulation of PbSe quantum-dot-doped fiber laser[J].Infrared Laser Eng., 2010, 39(5):815-818. (in Chinese)
CHENG C, BO J F, YAN J H, et al.. Experimental realization of a PbSe-quantum-dot doped fiber laser[J].IEEE Photonics Technol. Lett., 2013, 25(6):572-575.
SARAVANAMOORTHY S N, PETER A J, LEE C W. Optical peak gain in a PbSe/CdSe core-shell quantum dot in the presence of magnetic field for mid-infrared laser applications[J].Chem. Phys., 2017, 483-484:1-6.
KIGEL A, BRUMER M, SASHCHIUK A, et al.. Synthesis, characterization and the use of PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystals as saturable absorbers in passively switched near infra-red lasers[C].Proceedings of SPIE Physical Chemistry of Interfaces and Nanomaterials, San Diego, California, United States, 2005: 59290F.
BRUMER M, SIROTA M, KIGEL A, et al.. Nanocrystals of PbSe core, PbSe/PbS, and PbSe/PbSexS1-x core/shell as saturable absorbers in passively Q-switched near-infrared lasers[J].Appl. Opt., 2006, 45(28):7488-7497.
KIM W D, LEE S, PAK C, et al.. Metal tips on pyramid-shaped PbSe/CdSe/CdS heterostructure nanocrystal photocatalysts:study of ostwald ripening and core/shell formation[J].Chem. Commun., 2014, 50(14):1719-1721.
邢笑雪, 王宪伟, 秦宏伍, 等. PbSe量子点近红外光源的CH4气体检测[J].中国光学, 2018, 11(4):662-668.
XING X X, WANG X W, QIN H W, et al.. CH4 detection based on near-infrared luminescence of PbSe quantum dots[J].Chin. Opt., 2018, 11(4):662-668. (in Chinese)
YU S Y, YAN L, ZHANG T Q, et al.. Gas detection based on quantum dot LEDs utilizing differential optical absorption spectroscopy[J]. RSC Adv., 2017, 7(48):30096-30100.
XING X Y, LIU C, SHANG W W, et al.. Liquid-type structure near-infrared light-emitting diodes based on PbSe quantum dots for acetylene gas detection[J].Infrared Phys. Technol., 2019, 98:315-322.
0
浏览量
55
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构