1. 南京航空航天大学 材料科学与技术学院, 江苏省能量转换材料与技术重点实验室,江苏 南京,210016
扫 描 看 全 文
刘睿, 沈鸿烈, 崔树松, 等. 溶剂热法合成橙-绿双波段荧光碳点[J]. 发光学报, 2020,41(4):379-385.
LIU Rui, SHEN Hong-lie, CUI Shu-song, et al. Solvothermal Synthesis of Orange-green Dual Emission Carbon Dots[J]. Chinese Journal of Luminescence, 2020,41(4):379-385.
刘睿, 沈鸿烈, 崔树松, 等. 溶剂热法合成橙-绿双波段荧光碳点[J]. 发光学报, 2020,41(4):379-385. DOI: 10.3788/fgxb20204104.0379.
LIU Rui, SHEN Hong-lie, CUI Shu-song, et al. Solvothermal Synthesis of Orange-green Dual Emission Carbon Dots[J]. Chinese Journal of Luminescence, 2020,41(4):379-385. DOI: 10.3788/fgxb20204104.0379.
荧光碳点具有激发波长依赖的独特性质,有望基于此制备检测溶液pH值的荧光探针。以柠檬酸和尿素为原料、N,N-二甲基甲酰胺为溶剂,采用一步溶剂热法在200℃下保温12 h制备了一种新型的具有橙-绿双波段荧光发射性能的水溶性碳点。采用透射电子显微镜、X射线衍射、拉曼光谱、傅里叶变换红外光谱和X射线光电子能谱等方法对荧光碳点的组成和形貌进行了表征,还通过荧光发射光谱和紫外-可见吸收光谱对其光学性能进行了研究。结果表明,制备的碳点粒径为2.7~4.3 nm,表面带有大量含氧官能团,具有良好的水分散性。在440 nm和540 nm波长光激发下分别呈现绿色(500 nm)和橙色(590 nm)双波段荧光发射。合成的荧光碳点发光性能对pH值具有敏感性:在强碱性溶液中,590 nm的荧光强度比水溶液中提高了6.71倍,同时吸收峰的蓝移使得自然光下其溶液颜色发生了明显改变,具有强碱性指示剂的作用;在pH值为2~6的酸性溶液中,500 nm与590 nm发光峰强度比与pH值之间呈现良好的线性关系,展现了作为pH值比率荧光探针的应用潜力。
Carbon dots (CDs) are excitation wavelength-dependent and are expected to be a new type pH fluorescent probe. CDs that exhibited bright orange-green dual fluorescence emission bands were solvothermally synthesized in one pot by heating of citric acid (CA) and urea in N, N-dimethylformamide (DMF) at 200 ℃ for 12 hours. The CDs were characterized through transmission electron microscope, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy for composition, phase and morphology. In addition, ultraviolet - visible absorption spectra and fluorescence spectroscopy were used to measure the optical performance for the as-prepared CDs. It was found that the diameter of the CDs ranged from 2.7 nm to 4.3 nm with oxygenous groups on their surface and the CDs had good dispersion in aqueous solution. They showed PL peaks at green (500 nm) and orange (590 nm) under excitation of 440 nm and 540 nm respectively. These kinds of CDs had sensitivity to pH since their PL intensity of 590 nm wavelength in alkaline condition was 6.71 times higher than in neutral water and the UV-Vis absorbance peak showed blue-shifted leading to the color change of the solution. Besides, PL intensity ratio of 500 nm to 590 nm was linear against pH values from 2 to 6 that laid the foundation for the use of CDs in pH sensing applications.
荧光碳点溶剂热法橙-绿双波段荧光pH传感
fluorescent carbon dotssolvothermal methodorange-green dual fluorescence emission bandspH sensing
MIAO P,HAN K,TANG Y G,et al.. Recent advances in carbon nanodots:synthesis,properties and biomedical applications [J]. Nanoscale, 2015,7(5):1586-1595.
SHARMA S,UMAR A,SOOD S,et al.. Photoluminescent C-dots:an overview on the recent development in the synthesis,physiochemical properties and potential applications [J]. J. Alloys Compd., 2018,748:818-853.
YU H J,SHI R,ZHAO Y F,et al.. Smart utilization of carbon dots in semiconductor photocatalysis [J]. Adv. Mater., 2016,28(43):9454-9477.
ZHU S J,SONG Y B,ZHAO X H,et al.. The photoluminescence mechanism in carbon dots (graphene quantum dots,carbon nanodots,and polymer dots):current state and future perspective [J]. Nano Res., 2015,8(2):355-381.
XIAO L,SUN H D. Novel properties and applications of carbon nanodots [J]. Nanoscale Horiz., 2018,3(6):565-597.
于淑娟,陈宽,汪丰,等. 壳聚糖基聚合物碳点荧光材料合成及其自组装载药应用 [J]. 中国光学, 2018,11(3):420-430. YU S J,CHEN K,WANG F,et al.. Synthesis of chitosan-based polymer carbon dots fluorescent materials and application of self-assembled drug-loading [J]. Chin. Opt., 2018,11(3):420-430. (in Chinese)
LU S Y,SUI L Z,LIU J J,et al.. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence [J]. Adv. Mater., 2017,29(15):1603443-1-6.
DING H,YU S B,WEI J S,et al.. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism [J]. ACS Nano, 2016,10(1):484-491.
张博涵,田震,李迪,等. 发光碳纳米点的带隙调控及应用 [J]. 发光学报, 2019,40(6):691-712. ZHANG B H,TIAN Z,LI D,et al.. Luminescent carbon dots:bandgap modulation and applications [J]. Chin. J. Lumin., 2019,40(6):691-712. (in Chinese)
WANG B Y,LI J,TANG Z Y,et al.. Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes [J]. Sci. Bull., 2019,64(17):1285-1292.
HE J L,HE Y L,CHEN Y H,et al.. Solid-state carbon dots with red fluorescence and efficient construction of dual-fluorescence morphologies [J]. Small, 2017,13(26):1700075-1-10.
JOVANOVICC' S P,SYRGIANNIS Z,MARKOVICC' Z M,et al.. Modification of structural and luminescence properties of graphene quantum dots by gamma irradiation and their application in a photodynamic therapy [J]. ACS Appl. Mater. Interfaces, 2015,7(46):25865-25874.
NIE H,LI M J,LI Q S,et al.. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing [J]. Chem. Mater., 2014,26(10):3104-3112.
MIAO X,QU D,YANG D X,et al.. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization [J]. Adv. Mater., 2018,30(1):1704740.
SUN S,ZHANG L,JIANG K,et al.. Toward high-efficient red emissive carbon dots:facile preparation,unique properties,and applications as multifunctional theranostic agents [J]. Chem. Mater., 2016,28(23):8659-8668.
WANG J,CHENG C M,HUANG Y,et al.. A facile large-scale microwave synthesis of highly fluorescent carbon dots from benzenediol isomers [J]. J. Mater. Chem. C, 2014,2(25):5028-5035.
HOL K,SUDOLSK M,KALYTCHUK S,et al.. Graphitic nitrogen triggers red fluorescence in carbon dots [J]. ACS Nano, 2017,11(12):12402-12410.
BAO L,LIU C,ZHANG Z L,et al.. Photoluminescence-tunable carbon nanodots:surface-state energy-gap tuning [J]. Adv. Mater., 2015,27(10):1663-1667.
ZHU S J,MENG Q N,WANG L,et al.. Highly photoluminescent carbon dots for multicolor patterning,sensors,and bioimaging [J]. Angew. Chem. Int. Ed., 2013,52(14):3953-3957.
CHEN J,WEI J S,ZHANG P,et al.. Red-emissive carbon dots for fingerprints detection by spray method:coffee ring effect and unquenched fluorescence in drying process [J]. ACS Appl. Mater. Interfaces, 2017,9(22):18429-18433.
ZHU J Y,BAI X,BAI J L,et al.. Emitting color tunable carbon dots by adjusting solvent towards light-emitting devices [J]. Nanotechnology, 2018,29(8):085705.
GUO L,GE J C,LIU W M,et al.. Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism [J]. Nanoscale, 2016,8(2):729-734.
FAN L L,ZHU M,LEE X,et al.. Direct synthesis of graphene quantum dots by chemical vapor deposition [J]. Part. Part. Syst. Charact., 2013,30(9):764-769.
HU S L,TRINCHI A,ATKIN P,et al.. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light [J]. Angew. Chem. Int. Ed., 2015,54(10):2970-2974.
XIA C,CAO M M,XIA J F,et al.. An ultrafast responsive and sensitive ratiometric fluorescent pH nanoprobe based on label-free dual-emission carbon dots [J]. J. Mater. Chem. C, 2019,7(9):2563-2569.
ZHENG H Z,WANG Q L,LONG Y J,et al.. Enhancing the luminescence of carbon dots with a reduction pathway [J]. Chem. Commun., 2011,47(38):10650-10652.
ZHANG T X,ZHU J Y,ZHAI Y,et al.. A novel mechanism for red emission carbon dots:hydrogen bond dominated molecular states emission [J]. Nanoscale, 2017,9(35):13042-13051.
0
浏览量
32
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构