浏览全部资源
扫码关注微信
1. 东华理工大学 江西省新能源工艺及装备工程技术中心,江西 南昌,330013
2. 东华理工大学 教育部核技术应用工程研究中心, 江西 南昌 330013
纸质出版日期:2020-03-05,
网络出版日期:2019-11-27,
收稿日期:2019-09-16,
修回日期:2019-11-07,
移动端阅览
王智栋, 刘云, 彭新村等. 氧等离子体处理对GaAs表面单层自组装SiO<sub>2</sub>纳米球薄膜的影响[J]. 发光学报, 2020,41(3): 253-258
WANG Zhi-dong, LIU Yun, PENG Xin-cun etc. Effect of Oxygen Plasma Treatment on Monolayer Self-assembled SiO<sub>2</sub> Nanosphere Thin Films on GaAs Surface[J]. Chinese Journal of Luminescence, 2020,41(3): 253-258
王智栋, 刘云, 彭新村等. 氧等离子体处理对GaAs表面单层自组装SiO<sub>2</sub>纳米球薄膜的影响[J]. 发光学报, 2020,41(3): 253-258 DOI: 10.3788/fgxb20204103.0253.
WANG Zhi-dong, LIU Yun, PENG Xin-cun etc. Effect of Oxygen Plasma Treatment on Monolayer Self-assembled SiO<sub>2</sub> Nanosphere Thin Films on GaAs Surface[J]. Chinese Journal of Luminescence, 2020,41(3): 253-258 DOI: 10.3788/fgxb20204103.0253.
二维纳米阵列结构因其重要的光学性能被广泛应用于各类光电子器件。本文对自组装单层SiO
2
纳米球掩模刻蚀法制备GaAs纳米柱二维阵列结构的关键工艺技术进行了研究。采用旋涂法在GaAs表面制备自组装单层SiO
2
纳米球,重点研究了GaAs表面氧等离子体亲水处理工艺对纳米球排列特性的影响,获得最佳工艺条件为功率配比100 W+80 W、腔室压力4 Pa、氧气流量20 mL/min、处理时间1 200 s,并最终得到排列紧密的大面积单层纳米球薄膜。以单层纳米球为掩模,采用感应耦合等离子体刻蚀技术在GaAs表面制备了纳米柱阵列并测试了其表面光反射谱。测试结果表明,GaAs纳米柱阵列在特定波段的反射率降低至5%,远低于表面无纳米结构的薄膜材料表面高达40%的光反射。分析表明纳米柱可以激发米氏散射共振效应,从而有效降低反射率并提升光吸收。
Two-dimensional nano-array structures have been widely used in many optoelectronic devices due to their excellent optical performances. In this work
nano-pillar arrays were fabricated on GaAs substrate by self-assembled monolayer SiO
2
nanospheres etching. Monolayer SiO
2
nanospheres were self-assembled on GaAs substrate by rotary coating. The order of the nanosphere distribution was improved by improving the oxygen plasma hydrophilic treatment process of GaAs surface
and a large area of tightly arranged monolayer nanosphere was obtained under the power ratio of 100 W+80 W
the chamber pressure of 4 Pa
the oxygen flow rate of 20 mL/min and the etching time of 1 200 s. Taken this monolayer nanosphere as the etching mask
highly ordered GaAs nano-pillar array was then fabricated by inductively coupled plasma etching. The reflectivity of the GaAs nano-pillar array structure was found to be about 5% in a specific band by spectral analysis
which shows that light absorption can be enhanced effectively and can further match the requirements of actual optoelectronic devices.
SiO2纳米球氧等离子体ICP刻蚀
SiO2 nanospheresoxygen plasmaICP etch
COWLEY A,STEELE J A,BYRNE D,et al.. Fabrication and characterisation of GaAs nanopillars using nanosphere lithography and metal assisted chemical etching[J]. RSC Adv., 2016,6(36):30468-30473.
DENG W J,PENG X C,ZOU J J,et al.. Comparison of photoemission characteristics between square and circular wire array GaAs photocathodes[J]. Appl. Opt., 2017,56(32):8991-8995.
ARYAL M,BUYUKSERIN F,MIELCZAREK K,et al.. Imprinted large-scale high density polymer nanopillars for organic solar cells[J]. J. Vac. Sci. Technol. B, 2008,26(6):2562-2566.
WANG Y D,CHUA S J,TRIPATHY S,et al.. High optical quality GaN nanopillar arrays[J]. Appl. Phys. Lett., 2005,86(7):071917.
WANG H P,LAI K Y,LIN Y R,et al.. Periodic Si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection[J]. Langmuir, 2010,26(15):12855-12858.
DHINDSA N,CHIA A,BOULANGER J,et al.. Highly ordered vertical GaAs nanowire arrays with dry etching and their optical properties[J]. Nanotechnology, 2014,25(30):305303-1-11.
SANATINIA R,AWAN K M,NAUREEN S,et al.. GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications[J]. Opt. Mater. Express, 2012,2(11):1671-1679.
SANATINIA R. Ensemble and Individual Ⅲ-Ⅴ Semiconductor Nanopillars:Optical Properties and Applications[D]. Stockholm:KTH Royal Institute of Technology, 2014.
KIM B J,KIM J. Fabrication of GaAs subwavelength structure (SWS) for solar cell applications[J]. Opt. Express, 2011,19(S3):A326-A330.
CHO Y,GWON M,PARK H H,et al.. Wafer-scale nanoconical frustum array crystalline silicon solar cells:promising candidates for ultrathin device applications[J]. Nanoscale, 2014,6(16):9568-9573.
MAVROKEFALOS A,HAN S E,YERCI S,et al.. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications[J]. Nano Lett., 2012,12(6):2792-2796.
JEONG S,MCGEHEE M D,CUI Y. All-back-contact ultra-thin siliconnanocone solar cells with 13.7% power conversion efficiency[J]. Nat. Commun., 2013,4:2950-1-7.
BRANHAM M S,HSU W C,YERCI S,et al.. 15.7% efficient 10-m-thick crystalline silicon solar cells using periodic nanostructures[J]. Adv. Mater., 2015,27(13):2182-2188.
DIEDENHOFEN S L,JANSSEN O T A,GRZELA G,et al.. Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires[J]. ACS Nano, 2011,5(3):2316-2323.
GATES B D,XU Q B,STEWART M,et al.. New approaches to nanofabrication:molding,printing,and other techniques[J]. Chem. Rev., 2005,105(4):1171-1196.
GEISSLER M,XIA Y. Patterning:principles and some new developments[J]. Adv. Mater., 2004,16(15):1249-1269.
GUO L J. Nanoimprint lithography:methods and material requirements[J]. Adv. Mater., 2007,19(4):495-513.
SHI R,YOON J,CHANDA D,et al.. Performance of ultrathin silicon solar microcells with nanostructures of relief formed by soft imprint lithography for broad band absorption enhancement[J]. Nano Lett., 2010,10(8):3041-3046.
HSU C M,CONNOR S T,TANG M X,et al.. Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching[J]. Appl. Phys. Lett., 2008,93(13):133109-1-3.
KIM E,CHO Y,PARK K T,et al.. Mie resonance-mediated antireflection effects of Si nanocone arrays fabricated on 8-in wafers using a nanoimprint technique[J]. Nano. Res. Lett., 2015,10:164-1-5.
FUY H,KUZNETSOV A I,MIROSHNICHENKO A E,et al.. Directional visible light scattering by silicon nanoparticles[J]. Nat. Commun., 2013,4:1527-1-6.
SPINELLI P,VERSCHUUREN M A,POLMAN A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators[J]. Nat. Commun., 2012,3:692-1-5.
KUZNETSOV A I,MIROSHNICHENKO A E,BRONGERSMA M L,et al.. Optically resonant dielectric nanostructures[J]. Science, 2016,354(6314):2472-1-8.
0
浏览量
62
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构