1. 重庆安全技术职业学院 重庆,404020
扫 描 看 全 文
刘振平, 姜容, 庞钶靖. 锰掺杂硫化锌量子点磷光探针对蜂蜜中四环素类抗生素残留的高灵敏检测[J]. 发光学报, 2020,41(2): 208-216
LIU Zhen-ping, JIANG Rong, PANG Ke-jing. Highly Sensitive Detection of Tetracyclines Residues in Honey by Mn-doped ZnS Quantum Dots Phosphorescent Probe[J]. Chinese Journal of Luminescence, 2020,41(2): 208-216
刘振平, 姜容, 庞钶靖. 锰掺杂硫化锌量子点磷光探针对蜂蜜中四环素类抗生素残留的高灵敏检测[J]. 发光学报, 2020,41(2): 208-216 DOI: 10.3788/fgxb20204102.0208.
LIU Zhen-ping, JIANG Rong, PANG Ke-jing. Highly Sensitive Detection of Tetracyclines Residues in Honey by Mn-doped ZnS Quantum Dots Phosphorescent Probe[J]. Chinese Journal of Luminescence, 2020,41(2): 208-216 DOI: 10.3788/fgxb20204102.0208.
通过水合法合成了L-半胱氨酸修饰的锰掺杂硫化锌量子点(Mn:ZnS QDs)。利用四环素类抗生素(Tetracyclines,TCs)对锰掺杂硫化锌量子点磷光激发光的內滤效应建立蜂蜜中TCs残留的快速、高灵敏检测方法。TCs在Mn:ZnS QDs磷光最佳激发波长289 nm处有较强的紫外吸收,当Mn:ZnS QDs体系中存在TCs时,激发光一定程度地被TCs吸收,磷光信号减弱。本研究以强力霉素(Doxycycline,DTC)为代表,建立Mn:ZnS QDs磷光信号与DTC浓度的线性关系,进而实现对DTC的定量检测。结果表明,在优化条件下,Mn:ZnS QDs磷光信号减小值的自然对数与DTC浓度在0.05~150 molL ,-1,范围内呈良好的线性关系,线性方程为ln,P,0,/P,=0.01758,C,(DTC)+0.01351(,R,2,=0.999),检出限为0.009 7 molL ,-1,。同时,对实际样品蜂蜜做了加标回收率实验,回收率为92.4%~110%。本研究建立的Mn:ZnS QDs磷光探针用于TCs残留检测具有良好重复性和稳定性,可用于蜂蜜中TCs残留的快速、高灵敏检测。
L-cysteine modified Mn-doped ZnS quantum dots (Mn:ZnS QDs) were synthesized by hydration. A rapid and highly sensitive method for the determination of tetracyclines (TCs) residues in honey was established by using the internal filtration effect of TCs on Mn:ZnS QDs excited by phosphorescence. TCs have a strong ultraviolet absorption at the optimal phosphorescence excitation wavelength 289 nm of Mn:ZnS QDs. When TCs is present in the Mn:ZnS QDs solution, the excitation wavelength is absorbed by TCs to a certain extent, and the phosphorescence signal decreased. To be represented by doxycycline (DTC), the linear relationship between Mn:ZnS QDs phosphorescence signal and DTC concentration was established, and the quantitative detection of DTC was realized. Under the optimized conditions, the phosphorescence intensity decreased with the increase of DTC concentration and the relative phosphorescence intensity change ln(,P,0,/P,) showed a good linear relationship with the increase of DTC in the range from 0.05 to 150 molL ,-1,. The regression equation was ln,P,0,/P,=0.01758,C,(DTC)+0.01351(,R,2,=0.999), the detection limit is 0.009 7 molL ,-1,. The actual sample honey was tested, the recovery rate was 92.4%~110%. The Mn:ZnS QDs phosphorescence probe developed in this study has good repeatability and stability for the detection of TCs residues. It can be used for the rapid and highly sensitive detection of TCs residues in honey.
锰掺杂硫化锌量子点磷光探针强力霉素蜂蜜四环素类抗生素
Mn-doped ZnS quantum dotsphosphorescence probedoxycyclinehoneytetracyclines
XU N,DONG J,ZHOU W,et al.. Determination of doxycycline,4-epidoxycycline,and 6-epidoxycycline in aquatic animal muscle tissue by an optimized extraction protocol and ultra-performance performance liquid chromatography with ultraviolet detection[J]. Anal. Lett., 2019,52(3):452-464.
SCHNAPPINGER D,HILLEN W. Tetracyclines:antibiotic action,uptake,and resistance mechanisms[J]. Arch. Microbiol., 1996,165(6):359-369.
CARSON M C,NGOH M A,HADLEY S W. Confirmation of multiple tetracycline residues in milk and oxytetracycline in shrimp by liquid chromatography-particle beam mass spectrometry[J]. J. Chromatogr. B Biomed. Sci. Appl., 1998,712(1-2):113-128.
FARRINGTON W H H,TARBIN J,BYGRAVE J,et al.. Analysis of trace residues of tetracyclines in animal tissues and fluids using metal chelate affinity chromatography/HPLC[J]. Food Addit. Contam., 1991,8(1):55-64.
GARCIA I,SARABIA L A,ORTIZ M C. Detection capability of tetracyclines analysed by a fluorescence technique:comparison between bilinear and trilinear partial least squares models[J]. Anal. Chim. Acta, 2004,501(2):193-203.
FRITZ J W,ZUO Y G. Simultaneous determination of tetracycline,oxytetracycline,and 4-epitetracycline in milk by high-performance liquid chromatography[J]. Food Chem., 2007,105(3):1297-1301.
SHALABY A R,SALAMA N A,ABOU-RAYA S H,et al.. Validation of HPLC method for determination of tetracycline residues in chicken meat and liver[J]. Food Chem., 2011,124(4):1660-1666.
YU H,TAO Y F,CHEN D M,et al.. Development of an HPLC-UV method for the simultaneous determination of tetracyclines in muscle and liver of porcine,chicken and bovine with accelerated solvent extraction[J]. Food Chem., 2011,124(3):1131-1138.
POSYNIAK A,MITROWSKA K,ZMUDZKI J,et al.. Analytical procedure for the determination of chlortetracycline and 4-epi-chlortetracycline in pig kidneys[J]. J. Chromatogr. A, 2005,1088(1-2):169-174.
GAJDA A,POSYNIAK A,ZMUDZKI J,et al.. Determination of doxycycline in chicken fat by liquid chromatography with UV detection and liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. B, 2013,928:113-120.
FURUSAWA N. Simplified liquid-chromatographic determination of residues of tetracycline antibiotics in eggs[J]. Chromatographia, 2001,53(1-2):47-50.
SANTOS M D F,VERMEERSCH H,REMON J P,et al.. Validation of a high-performance liquid chromatographic method for the determination of doxycycline in turkey plasma[J]. J. Chromatogr. B, 1996,682(2):301-308.
ARMSTRONG N,RICHEZ M,RAOULT D,et al.. Simultaneous UHPLC-UV analysis of hydroxychloroquine,minocycline and doxycycline from serum samples for the therapeutic drug monitoring of Q fever and Whipple's disease[J]. J. Chromatogr. B, 2017,1060:166-172.
WEN Y,WANG Y,FENG Y Q. Simultaneous residue monitoring of four tetracycline antibiotics in fish muscle by in-tube solid-phase microextraction coupled with high-performance liquid chromatography[J]. Talanta, 2006,70(1):153-159.
MONTEIRO S H,FRANCISCO J G,CAMPION T F,et al.. Multiresidue antimicrobial determination in Nile tilapia (Oreochromis niloticus) cage farming by liquid chromatography tandem mass spectrometry[J]. Aquaculture, 2015,447:37-43.
ANDERSEN W C,ROYBAL J E,GONZALES S A,et al.. Determination of tetracycline residues in shrimp and whole milk using liquid chromatography with ultraviolet detection and residue confirmation by mass spectrometry[J]. Anal. Chim. Acta, 2005,529(1-2):145-150.
TANENBAUM M E,GILBERT L A,QI L S,et al.. A protein-tagging system for signal amplification in gene expression and fluorescence imaging[J]. Cell, 2014,159(3):635-646.
ZHOU Y,ZHANG J F,YOON J. Fluorescence and colorimetric chemosensors for fluoride-ion detection[J]. Chem. Rev., 2014,114(10):5511-5571.
WU S J,ZHANG H,SHI Z,et al.. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles[J]. Food Control, 2015,50:597-604.
WANG Y,GAN N,LI T H,et al.. A novel aptamer-quantum dot fluorescence probe for specific detection of antibiotic residues in milk[J]. Anal. Methods, 2016,8(15):3006-3013.
MEDINTZ I L,UYEDA H T,GOLDMAN E R,et al.. Quantum dot bioconjugates for imaging,labelling and sensing[J]. Nat. Mater., 2005,4(6):435-446.
SUYVER J F,WUISTER S F,KELLY J J,et al.. Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+[J]. Nano Lett., 2001,1(8):429-433.
KUANG H,CUI G,CHEN X J,et al.. A one-step homogeneous sandwich immunosensor for salmonella detection based on magnetic nanoparticles (MNPs) and quantum dots (QDs)[J]. Int. J. Mol. Sci., 2013,14(4):8603-8610.
XU R,JIANG Y D,XIA L,et al.. A sensitive photoelectrochemical biosensor for AFP detection based on ZnO inverse opal electrodes with signal amplification of CdS-QDs[J]. Biosens. Bioelectron., 2015,74:411-417.
YAN S G,ZHANG L C,TANG Y R,et al.. Synthesis of water-soluble Ag2Se QDs as a novel resonance Rayleigh scattering sensor for highly sensitive and selective ConA detection[J]. Analyst, 2014,139(17):4210-4215.
FERNNDEZ-ARGELLES M T,JIN W J,COSTA-FERNNDEZ J M,et al.. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(Ⅱ) in aqueous solutions by luminescent measurements[J]. Anal. Chim. Acta, 2005,549(1-2):20-25.
BIAN W,WANG F,ZHANG H,et al.. Fluorescent probe for detection of Cu2+ using core-shell CdTe/ZnS quantum dots[J]. Luminescence, 2015,30(7):1064-1070.
BIAN W,MA J,LIU Q L,et al.. A novel phosphorescence sensor for Co2+ ion based on Mn-doped ZnS quantum dots[J]. Luminescence, 2014,29(2):151-157.
LU S M,LI G L,LV Z X,et al.. Facile and ultrasensitive fluorescence sensor platform for tumor invasive biomaker -glucuronidase detection and inhibitor evaluation with carbon quantum dots based on inner-filter effect[J]. Biosens. Bioelectron., 2016,85:358-362.
ZOU W S, SHENG D, GE X,et al..Room-temperature phosphorescence chemosensor and Rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots[J]. Anal. Chem., 2011,83(1):30-37.
WANG S,YONG W,LIU J H,et al.. Development of an indirect competitive assay-based aptasensor for highly sensitive detection of tetracycline residue in honey[J]. Biosens. Bioelectron., 2014,57:192-198.
TANG Y L,ZHANG J C,LIU J H,et al.. The development of a graphene oxide-based aptasensor used for the detection of tetracycline in honey[J]. Anal. Methods, 2017,9(7):1133-1140.
TANG D D,ZHANG J Y,ZHOU R X,et al.. Phosphorescent inner filter effect-based sensing of xanthine oxidase and its inhibitors with Mn-doped ZnS quantum dots[J]. Nanoscale, 2018,10(18):8477-8482.
卞伟. 锰掺杂硫化锌量子点磷光探针研究及分析应用[D]. 太原:山西大学, 2015. BIAN W. Phosphorescence Probe Research and Analytical Application Based on Manganese Doped Zinc Sulfide Quantum Dots[D]. Taiyuan:Shanxi University, 2015. (in Chinese)
ZHOU C,ZOU H M,SUN C J,et al.. Fluorescent aptasensor for detection of four tetracycline veterinary drugs in milk based on catalytic hairpin assembly reaction and displacement of G-quadruplex[J]. Anal. Bioanal. Chem., 2018,410(12):2981-2989.
SHENG W,CHANG Q,SHI Y J,et al.. Visual and fluorometric lateral flow immunoassay combined with a dual-functional test mode for rapid determination of tetracycline antibiotics[J]. Microchim. Acta, 2018,185(9):404.
GARCA-FERNNDEZ J,TRAPIELLA-ALFONSO L,COSTA-FERNNDEZ J M,et al.. A quantum dot-based immunoassay for screening of tetracyclines in bovine muscle[J]. J. Agric. Food Chem., 2014,62(7):1733-1740.
LE T,YU H,WANG X L,et al.. Development and validation of an immunochromatographic test strip for rapid detection of doxycycline residues in swine muscle and liver[J]. Food Agric. Immunol., 2011,22(3):235-246.
LI J,ZENG W S,LAI X J,et al.. Selective and sensitive determination of tetracyclines by HPLC with chemiluminescence detection based on a cerium(Ⅳ)-methoxylated cypridina luciferin analogue system[J]. J. Sep. Sci., 2018,41(22):4115-4121.
JANK L,MARTINS M T,ARSAND J B,et al.. An LC-ESI-MS/MS method for residues of fluoroquinolones,sulfonamides,tetracyclines and trimethoprim in feedingstuffs:validation and surveillance[J]. Food Addit. Contam. A, 2018,35(10):1975-1989.
JIN Y,ZHANG J Z,ZHAO W,et al.. Development and validation of a multiclass method for the quantification of veterinary drug residues in honey and royal jelly by liquid chromatography-tandem mass spectrometry[J]. Food Chem., 2017,221:1298-1307.
0
浏览量
31
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构