1. 福州大学 平板显示技术国家地方联合工程实验室,福建 福州,350108
2. 福建工程学院 微电子技术研究中心,福建 福州,350118
扫 描 看 全 文
何伟欣, 何立铧, 陈惠鹏, 等. 基于有机薄膜晶体管的光写入多级存储器[J]. 发光学报, 2020,41(1):95-102.
HE Wei-xin, HE Li-hua, CHEN Hui-peng, et al. Optical Write Multi-level Memory Based on Organic Thin Film Transistor[J]. Chinese Journal of Luminescence, 2020,41(1):95-102.
何伟欣, 何立铧, 陈惠鹏, 等. 基于有机薄膜晶体管的光写入多级存储器[J]. 发光学报, 2020,41(1):95-102. DOI: 10.3788/fgxb20204101.0095.
HE Wei-xin, HE Li-hua, CHEN Hui-peng, et al. Optical Write Multi-level Memory Based on Organic Thin Film Transistor[J]. Chinese Journal of Luminescence, 2020,41(1):95-102. DOI: 10.3788/fgxb20204101.0095.
由于依靠不断缩小存储单元尺寸来提升单位面积存储能力的传统方法将会面临着器件尺寸的物理极限等瓶颈,人们逐渐将目光投向了能够在单一器件上实现高密度存储的多级存储器件。本文利用有机薄膜晶体管中存在的持续光电导率(PPC)效应制备了一个光写入操作的多级存储器件,有效地避免了电写入操作对器件的接触破坏性和较大功耗问题。研究了在不同功率(60,100,150 W/cm ,2,)和不同持续时间(50~1 000 ms)700 nm光写入脉冲作用下的器件存储状态,器件在光功率为60 W/cm ,2,、持续时间为100 ms的光脉冲下展现出了低至0.189 nJ的极低工作功耗。通过对器件施加16个连续光写入脉冲证实器件具有16个有效的存储状态,实现了存储容量为4 bits的多级光写入存储功能。
To increase the storage capacity per unit area, the traditional strategy is reducing the storage capacity per unit area, which will face bottlenecks such as the physical limits of device size. People are turning their attention to multi-level memory devices that can achieve high-density storage on a single device. In this paper, a multi-level memory device with optical write operation is fabricated by using the persistent photoconductivity (PPC) effect in organic thin film transistors, which effectively avoids the contact destructiveness and large work consumption of the device by the electrical write operation. The device storage state under different power (60, 100, 150 W/cm ,2,) and different duration (50-1 000 ms) 700 nm optical write pulse was studied. It exhibited extremely low operating power as low as 0.189 nJ under the optical pulse with power of 60 W/cm ,2, and duration of 100 ms. When 16 consecutive optical write pulses were applied, the device showed 16 distinct effective storage state, it meant that multi-level optical write storage function with a storage capacity of 4 bits was realized in this device.
有机薄膜晶体管多级存储光写入存储
organic thin film transistormulti-level storageoptical storage
CHEN X L,ZHOU Y,ROY V A L,et al.. Evolutionary metal oxide clusters for novel applications:toward high-density data storage in nonvolatile memories[J]. Adv. Mater., 2018,30(3):1703950-1-9.
SHIM J,PARK H Y,KANG D H,et al.. Electronic and optoelectronic devices based on two-dimensional materials:from fabrication to application[J]. Adv. Electron. Mater., 2017,3(4):1600364.
HONG H,LIU C,CAO T,et al.. Interfacial engineering of van der Waals coupled 2D layered materials[J]. Adv. Mater. Interfaces, 2017,4(9):1601054.
JEONG U,TARSOLY G,LEE J,et al.. Interdigitated ambipolar active layer for organic phototransistor with balanced charge transport[J]. Adv. Electron. Mater., 2019,5(4):1800652-1-11.
张华野,张帆,张猛,等. 交联PMMA修饰的PVA绝缘层对P3HT有机场效应晶体管性能的影响[J]. 发光学报, 2018,39(11):1542-1548. ZHANG H Y,ZHANG F,ZHANG M,et al.. Influence of PVA insulator modified with cross-linked PMMA on the performance of P3HT OFETs[J]. Chin. J. Lumin., 2018,39(11):1542-1548. (in Chinese)
YI H T,PAYNE M M,ANTHONY J E,et al.. Ultra-flexible solution-processed organic field-effect transistors[J]. Nat. Commun., 2012,3:1259-1-7.
刘东洋,刘子洋,王学会,等. 利用混合有机空穴传输材料提升有机薄膜晶体管场效应迁移率[J]. 发光学报, 2014,35(3):349-353. LIU D Y,LIU Z Y,WANG X H,et al.. Improvement of the field effect mobility of OTFT by using organic hole transport material[J]. Chin. J. Lumin., 2014,35(3):349-353. (in Chinese)
HU D B,WANG X M,CHEN H P,et al.. High performance flexible nonvolatile memory based on vertical organic thin film transistor[J]. Adv. Funct. Mater., 2017,27(41):1703541.
HWANG S K,BAE I,CHO S M,et al.. High performance multi-level non-volatile polymer memory with solution-blended ferroelectric polymer/high-k insulators for low voltage operation[J]. Adv. Funct. Mater., 2013,23(44):5484-5493.
REN X C,CHAN P K L. 23 bits optical sensor based on nonvolatile organic memory transistor[J]. Appl. Phys. Lett., 2014,104(11):113302-1-5.
HU D B,ZHANG G C,YANG H H,et al.. High-performance nonvolatile organic transistor memory using quantum dots-based floating gate[J]. IEEE Trans. Electron Devices, 2017,64(9):3816-3821.
VAN THO L,BAEG K J,NOH Y Y. Organic nano-floating-gate transistor memory with metal nanoparticles[J]. Nano Converg., 2016,3:10-1-7.
CHENG S W,HAN T,HUANG T Y,et al.. Novel organic phototransistor-based nonvolatile memory integrated with UV-sensing/green-emissive aggregation enhanced emission (AEE)-active aromatic polyamide electret layer[J]. ACS Appl. Mater. Interfaces, 2018,10(21):18281-18288.
YANG Y,HE Y L,NIE S,et al.. Light stimulated IGZO-based electric-double-layer transistors for photoelectric neuromorphic devices[J]. IEEE Electron. Device Lett., 2018,39(6):897-900.
ATABAKI A H,MOAZENI S,PAVANELLO F,et al.. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 2018,556(7701):349-354.
LEE J D,KIM Y,KIM C M. Model for petahertz optical memory based on a manipulation of the optical-field-induced current in dielectrics[J]. New J. Phys., 2018,20(9):093029-1-7.
SHIONO F,ABE H,NAGASE T,et al.. Optical memory characteristics of solution-processed organic transistors with self-organized organic floating gates for printable multi-level storage devices[J]. Org. Electron., 2019,67:109-115.
LEYDECKER T,HERDER M,PAVLICA E,et al.. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend[J]. Nat. Nanotechnol., 2016,11(9):769-775.
PERNICE W H P,BHASKARAN H. Photonic non-volatile memories using phase change materials[J]. Appl. Phys. Lett., 2012,101(17):171101.
ZHAI Y B,YANG J Q,ZHOU Y,MAO,et al.. Toward non-volatile photonic memory:concept,material and design[J]. Mater. Horiz., 2018,5(4):641-654.
SONG J F,LUO X S,LIM A E J,et al.. Integrated photonics with programmable non-volatile memory[J]. Sci. Rep., 2016,6:22616-1-7.
王向华,顾勋,张春雨,等. 非对称结构诱导取向生长的有机半导体薄膜[J]. 发光学报, 2017,38(10):1314-1320. WANG X H,GU X,ZHANG C Y,et al.. Directional growth of organic semiconductor film on asymmetric structure[J]. Chin. J. Lumin., 2017,38(10):1314-1320. (in Chinese)
LEE D,HWANG E,LEE Y,et al.. Multibit MoS2 photoelectronic memory with ultrahigh sensitivity[J]. Adv. Mater., 2016,28(41):9196-9202.
XIE C,YOU P,LIU Z K,et al.. Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions[J]. Light Sci. Appl., 2017,6:e17023-1-9.
DAUS A,ROLDN-CARMONA C,DOMANSKI K,et al.. Metal-halide perovskites for gate dielectrics in field-effect transistors and photodetectors enabled by PMMA lift-off process[J]. Adv. Mater., 2018,30(23):e1707412.
WANG W H,DU R X,GUO X T,et al.. Interfacial amplification for graphene-based position-sensitive-detectors[J]. Light Sci. Appl., 2017,6:e17113-1-5.
WANG Y,LV Z Y,CHEN J R,et al.. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing[J]. Adv. Mater., 2018,30(38):1802883-1-9.
薛战,田丰收,王庆贺,等. 氧敏感性供体-受体共轭聚合物薄膜晶体管[J]. 发光学报, 2018,39(8):1136-1142. XUE Z,TIAN F S,WANG Q H,et al.. Oxygen sensing characteristics of donor-acceptor conjugated polymer transistors of organic semiconductor film[J]. Chin. J. Lumin., 2018,39(8):1136-1142. (in Chinese)
DAI S L,WU X H,LIU D P,et al.. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors[J]. ACS Appl. Mater. Interfaces, 2018,10(25):21472-21480.
CHEN J Y,CHIU Y C,LI Y T,et al.. Nonvolatile perovskite-based photomemory with a multilevel memory behavior[J]. Adv. Mater., 2017,29(33):1702217-1-7.
ZHU Y B,LI Z Y,HAO Z,et al.. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface[J]. Light Sci. Appl., 2018,7:67-1-11.
GUO Y L,DU C Y,DI C A,et al.. Field dependent and high light sensitive organic phototransistors based on linear asymmetric organic semiconductor[J]. Appl. Phys. Lett., 2009,94(14):143303-1-3.
DYAKONOV V,FRANKEVICH E. On the role played by polaron pairs in photophysical processes in semiconducting polymers[J]. Chem. Phys., 1998,227(1-2):203-217.
LUTSYK P,JANUS K,MIKO?AJCZYK M,et al.. Long-lived persistent currents in poly (3-octylthiophene) thin film transistors[J]. Org. Electron., 2010,11(3):490-497.
SALA F,GABRYS R,DOLECEK L. Dynamic threshold schemes for multi-level non-volatile memories[J]. IEEE Trans. Commun., 2013,61(7):2624-2634.
0
浏览量
34
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构