1. 曲靖师范学院 化学与环境科学学院, 云南 曲靖 655011
2. 曲靖师范学院 教师与教育学院, 云南 曲靖 655011
扫 描 看 全 文
闫宇星, 汪帆, 李付绍等. ZnNb<sub>2-<em>x</em></sub>Ta<sub><em>x</em></sub>O<sub>6</sub>(<em>x</em>=0~2.0)材料电子结构与光学性质的第一性原理计算[J]. 发光学报, 2020,41(1): 38-47
YAN Yu-xing, WANG Fan, LI Fu-shao etc. First Principle Calculation of Electronic Structure and Optical Properties of ZnNb<sub>2-<em>x</em></sub>Ta<sub><em>x</em></sub>O<sub>6</sub> (<em>x</em>=0-2.0)[J]. Chinese Journal of Luminescence, 2020,41(1): 38-47
闫宇星, 汪帆, 李付绍等. ZnNb<sub>2-<em>x</em></sub>Ta<sub><em>x</em></sub>O<sub>6</sub>(<em>x</em>=0~2.0)材料电子结构与光学性质的第一性原理计算[J]. 发光学报, 2020,41(1): 38-47 DOI: 10.3788/fgxb20204101.0038.
YAN Yu-xing, WANG Fan, LI Fu-shao etc. First Principle Calculation of Electronic Structure and Optical Properties of ZnNb<sub>2-<em>x</em></sub>Ta<sub><em>x</em></sub>O<sub>6</sub> (<em>x</em>=0-2.0)[J]. Chinese Journal of Luminescence, 2020,41(1): 38-47 DOI: 10.3788/fgxb20204101.0038.
采用基于密度泛函理论的赝势平面波第一性原理方法,理论研究了不同计量Ta掺入ZnNb,2,O,6,材料的光电特性。通过对ZnNb,2-,x,Ta,x,O,6,(,x,=0~2.0)材料键结构和态密度的计算,并结合带间电子跃迁分析了材料的介电函数、折射率、反射率以及吸收系数。计算结果显示:(1)ZnNb,2-,x,Ta,x,O,6,(,x,=0~2.0)为间接半导体,带隙随着Ta原子的掺入呈下降趋势(,x,=0,,E,g,=3.51 eV;,x,=2,,E,g,=2.916 eV),随着Ta掺入量的增加导带顶逐渐移向费米面。态密度主要由O 2p、Zn 3d、Nb 4d、Ta 5d轨道组成;(2)ZnNb,2-,x,Ta,x,O,6,(,x,=0~2.0)价电子态呈现为非对称,具有很强的局域性,对材料整体的电子结构和键特性有重要的影响;(3)介电函数的计算表明,ZnNb,2-,x,Ta,x,O,6,(,x,=0~2.0)材料各向异性,最大吸收峰在3.0210,5, cm,-1,附近,消光系数在带边表现出较强的吸收特性,进一步以带结构和态密度为出发点,探讨了电子带间跃迁的光电机理。该结果为研制高性能光电器件用新型功能材料提供了理论依据。
According to the pseudopotential plane-wave method of first-principles calculation based on the DFT, we investigate the electronic structures and optical properties of ZnNb,2,O,6, doped by tantalum with different concentrations, and their relationship is theoretically analyzed. The dielectric function and complex refractive, reflectivity, and absorption coefficents of ZnNb,2-,x,Ta,x,O,6, (,x,=0-2.0) dominated by electron interband transitions are analyzed in terms of the precisely calculated band structure and density of satates. The results indicate that:(1)ZnNb,2-,x,Ta,x,O,6, (,x,=0-2.0) is a indirect semiconductor and the band gap is 3.51-2.916 eV. the conduction band edge moves in the direction of the Fermi level after being doped. The density of states is mainly composed of O 2p, Zn 3d, Nb 4d and Ta 5d orbitis. (2)The valences electronic state of ZnNb,2-,x,Ta,x,O,6, (,x,=0-2.0) is asymmetric and has a strong local area characteristic. These have an important influence on the electronic structure and the bonding chararcteristics of ZnNb,2-,x,Ta,x,O,6, (,x,=0-2.0). (3)The calculation of the dielectric function reveals that ZnNb,2-,x,Ta,x,O,6, (,x,=0-2.0) is anisotropic, the biggest peak of absorption will fluctuate narrowly around 3.0210,5, cm,-1, the extinction coefficient shows strong absorption characteristic near the band edge, and the mechanism of the electric and optical properties of ZnNb,2-,x,Ta,x,O,6, (,x,=0-2.0) dominated by electron inter-band transitions are analyzed in terms of calculated band structure and desity of states, which provides theoretical basis for developing novel functional materials with high performance to be used in optoelectronic devices.
ZnNb2O6电子结构光学性能第一性原理
ZnNb2O6electrobic structureoptical propertiesfirst-principles
ZHANG Y C,YUE Z X,GUI Z L,et al.. Effects of CaF2 addition on the microstructure and microwave dielectric properties of ZnNb2O6 ceramics[J]. Ceram. Int., 2003,29(5):555-559.
NGAMJARUROJANA A,KHAMMAN O,YIMNIRUN R,et al.. Effect of calcination conditions on phase formation and particle size of zinc niobate powders synthesized by solid-state reaction[J]. Mater. Lett., 2006,60(23):2867-2872.
XU D P,LIU Y,ZHOU Q,et al.. Optical phonon behaviors of columbite ZnNb2O6 single crystal[J]. J. Alloys Compd., 2015,618:694-699.
NEURGAONKAR R R,CORY W K,OLIVER J R,et al.. Growth and ferroelectric properties of tungsten bronze Sr2-xCaxNaNb5O15 single crystals[J]. Mater. Res. Bull., 1988,23(10):1459-1467.
NEURGAONKAR R R,NELSON J G,OLIVER J R. Ferroelectric properties of the tungsten bronze M62+M24-Nb8O30 solid solution systems[J]. Mater. Res. Bull., 1992,27(6):677-684.
许煜寰. 铁电与压电材料[M]. 北京:科学出版社, 1978. XU Y H. Ferroelectric and Piezoelectric Materials[M]. Beijing:Science Press, 1978. (in Chinese)
张迎春. 铌钽酸盐微波介质陶瓷材料[M]. 北京:科学出版社, 2005. ZHANG Y C. Microwave Dielectric Ceramics of Niobate Tantalate[M]. Beijing:Science Press, 2005. (in Chinese)
LEE H J,KIM I T,HONG K S. Dielectric properties of AB2O6 compounds at microwave frequencies (A=Ca,Mg,Mn,Co,Ni,Zn,and B=Nb,Ta)[J]. Jpn. J. Appl. Phys., 1997,36(10):L1318-L1320.
冯现徉,王培吉,张昌文,等. In掺杂ZnO光学性质的第一性原理研究[J]. 人工晶体学报, 2011,40(2):517-521. FENG X Y,WANG P J,ZHANG C W,et al.. First-principle study on optical properties of ZnO doped with In[J]. J. Synth. Cryst., 2011,40(2):517-521. (in Chinese)
ZHANG Y C,LI L T,YUE Z X,et al.. Effects of additives on microstructures and microwave dielectric properties of ZnNb2O6 ceramics[J]. Mat. Sci. Eng. B, 2003,99(1-3):282-285.
ZHENG J,CHEN G H,CHEN X,et al.. Dielectric properties and energy storage behaviors in ZnNb2O6-doped Sr0.97Nd0.02-TiO3 ceramics[J]. J. Mater. Sci. Mater. Electron., 2016,27(4):3759-3764.
LIU G,ZHANG L Y,WANG Z Y,et al.. The doping effects of ZnNb2O6 on the phase,microstructure and energy storage properties of (Sr0.98Ca0.02)TiO3 paraelectric ceramics[J]. Ferroelectrics, 2018,531(1):122-130.
WANG T,WEI X Y,HU Q Y,et al.. Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage[J]. Mat. Sci. Eng. B, 2013,178(16):1081-1086.
KORMNYOS A,THOMAS A,HUDA M N,et al.. Solution combustion synthesis,characterization,and photoelectrochemistry of CuNb2O6 and ZnNb2O6 nanoparticles[J]. J. Phys. Chem. C, 2016,120(29):16024-16034.
HSIAO Y J,FANG T H,JI L W. Synthesis and luminescent properties of ZnNb2O6 nanocrystals for solar cell[J]. Mater. Lett., 2010,64(23):2563-2565.
WU W M,LIANG S J,DING Z X,et al.. A new approach to the preparation of microcrystalline ZnNb2O6 photocatalysts via a water-soluble niobium-citrate-peroxo compound[J]. Solid State Sci., 2011,13(11):2019-2023.
ZHOU Y Y,QIU Z F,L M K,et al.. Photoluminescence characteristics of pure and Dy-doped ZnNb2O6 nanoparticles prepared by a combustion method[J]. J. Phys. Chem. C, 2007,111(28):10190-10193.
WABURG D C M,MLLER-BUSCHBAUM P D H. ZnTa2O6,ein neuer Vertreter des tri--PbO2-Typs (mit erg nzenden Daten ber ZnNb2O6)[J]. Z. Anorg. Allg. Chem., 1984,508(1):55-60.
蒋联姣,符斯列,秦盈星,等. N空位、Ga空位对GaN:Mn体系电磁性质和光学性质影响的第一性原理研究[J]. 功能材料, 2016,47(12):12139-12146. JIANG L J,FU S L,QIN Y X,et al.. First-principles study of the effects of GaN:Mn with N vacancy and Ga vacancy on electronic structures,ferromagnetism and optical properties[J]. J. Funct. Mater., 2016,47(12):12139-12146. (in Chinese)
高小奇,郭志友,张宇飞,等. Al-N共掺杂ZnO电子结构和光学性质[J]. 发光学报, 2010,31(4):509-514. GAO X Q,GUO Z Y,ZHANG Y F,et al.. The electronic structure and optical properties of Al-N codoped ZnO[J]. Chin. J. Lumin., 2010,31(4):509-514. (in Chinese)
可祥伟,张蓉,杨春燕,等. ZnAl2O4的电子结构及光学性质的第一性原理计算[J]. 人工晶体学报, 2013,42(2):268-272. KE X W,ZHANG R,YANG C Y,et al.. First-principle calculation of electronic structure and optical properties of ZnAl2O4[J]. J. Synth. Cryst., 2013,42(2):268-272. (in Chinese)
段永华,孙勇,鲁俐. (L12,D022)-TiAl3和L12-Ti(Al,Pt)3 电子结构与光学性质第一性原理计算[J]. 功能材料, 2013,42(24):3591-3597. DUAN Y H,SUN Y,LU L. Electronic structures and optical properties of (L12,D022)-TiAl3 and L12-Ti(Al,Pt)3 by first-principles calculation[J]. J. Funct. Mater., 2013,42(24):3591-3597. (in Chinese)
邓永荣,闫万珺,张春红,等. 不同浓度Ti掺杂Ca2Si电子结构及光学性质的研究[J]. 固体电子学研究与进展, 2019,39(1):49-53. DENG Y R,YAN W J,ZHANG C H,et al.. Electronic structure and optical properties of ti doped Ca2S with different concentrations[J]. Res. Prog. SSE, 2019,39(1):49-53. (in Chinese)
冉耀尊,高冉,黄浦,等. Sc掺杂正交相Ca2Si电子结构及光学性质的第一性原理[J]. 光谱实验室, 2012,29(6):3500-3507. RAN Y Z,GAO R,HUANG P,et al.. First-principles of electronic structure and optical properties for Sc-doped orthorhombic Ca2Si[J]. Chin. J. Spectrosc. Lab., 2012,29(6):3500-3507. (in Chinese)
包秀丽,冉扬强. Cu2Se电子结构和光学性质的第一性原理计算[J]. 原子与分子物理学报, 2011,28(6):1117-1122. BAO X L,RAN Y Q. First-principles calculation of Cu2Se electronic structure and the optical properties[J]. J. At. Mol. Phys., 2011,28(6):1117-1122. (in Chinese)
李旭珍,谢泉,陈茜,等. OsSi2电子结构和光学性质的研究[J]. 物理学报, 2010,59(3):2016-2021. LI X Z,XIE Q,CHEN Q,et al.. The study on the electronic structure and optical properties of OsSi2[J]. Acta Phys. Sinica, 2010,59(3):2016-2021. (in Chinese)
张丽丽,夏桐,刘桂安,等. 第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质[J]. 物理学报, 2019,68(1):017401-1-9. ZHANG L L,XIA T,LIU G A,et al.. Electronic and optical properties of N-Pr co-doped anatase ZnO from first-principles[J]. Acta Phy. Sinica, 2019,68(1):017401-1-9. (in Chinese)
张梅玲,陈玉红,张材荣,等. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究[J]. 物理学报, 2019,68(8):087101-1-10. ZHANG M L,CHEN Y H,ZHANG C R,et al.. Effect of intrinsic defects and copper impurities co-existing on electromagnetic optical properties of ZnO:first principles study[J]. Acta Phys. Sinica, 2019,68(8):087101-1-10. (in Chinese)
KAHN A H,LEYENDECKER A J. Electronic energy bands in strontium titanate[J]. Phys. Rev., 1964,135(5A):A1321-A1325.
杨春燕,张蓉,可祥伟,等. BaTaO2N局域电子结构及光学性质的第一原理计算[J]. 中国科学:物理学力学天文学, 2012,42(2):400-405. YANG C Y,ZHANG R,KE X W,et al.. First-principles calculation for local electronic structure and optical properties of BaTaO2N[J]. Sci. Sinica Phys. Mech. Astron., 2012, 42(2):400-405. (in Chinese)
0
浏览量
33
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构