1.河池学院 化学与生物工程学院, 广西 河池 546300
2.长春工业大学 材料科学与工程学院, 吉林 长春 130012
[ "张鹏(1990-), 男, 河南三门峡人, 硕士, 助教, 2017年于长春工业大学获得硕士学位, 主要从事稀土发光材料的研究。E-mail:hcxyhszp@163.com" ]
[ "王丽丽(1979-), 女, 黑龙江七台河人, 博士, 教授, 2009年于吉林大学获得博士学位, 主要从事稀土发光材料的研究。E-mail:wanglili@ccut.edu.cn" ]
[ "银秀菊(1976-), 女, 广西河池人, 博士, 教授, 2019年于浙江大学获得博士学位, 主要从事配位化学的研究。E-mail:gxyxj505@163.com" ]
扫 描 看 全 文
张鹏, 谢婉莹, 左瑞良, 等. Mn2+掺杂水溶性NaBiF4:Yb/Er上转换微米晶的制备及其上转换发光性能[J]. 发光学报, 2020,41(9):1122-1127.
Peng ZHANG, Wan-ying XIE, Rui-liang ZUO, et al. Preparation of Mn2+ Doping Water-soluble NaBiF4: Yb/Er Microcrystals and Their Upconversion Luminescence Properties[J]. Chinese Journal of Luminescence, 2020,41(9):1122-1127.
张鹏, 谢婉莹, 左瑞良, 等. Mn2+掺杂水溶性NaBiF4:Yb/Er上转换微米晶的制备及其上转换发光性能[J]. 发光学报, 2020,41(9):1122-1127. DOI: 10.37188/fgxb20204109.1122.
Peng ZHANG, Wan-ying XIE, Rui-liang ZUO, et al. Preparation of Mn2+ Doping Water-soluble NaBiF4: Yb/Er Microcrystals and Their Upconversion Luminescence Properties[J]. Chinese Journal of Luminescence, 2020,41(9):1122-1127. DOI: 10.37188/fgxb20204109.1122.
NaBiF,4,作为一种新型的上转换发光基质材料,具有优异的发光性能。本文以聚乙烯吡咯烷酮(PVP)作为表面活性剂,通过溶剂热法成功制备出水溶性NaBiF,4,:Yb,3+,/Er,3+,/Mn,2+,上转换微米晶,并对其晶相、形貌及发光性能进行了表征。在980 nm激发光条件下,NaBiF,4,:Yb,3+,/Er,3+,/Mn,2+,可发射出强烈的绿色发光,且发光强度随Mn,2+,掺杂浓度的提高呈现先增强后减弱的趋势,表现出优异的上转换发光性能。同时,NaBiF,4,:Er,3+,/Yb,3+,/Mn,2+,上转换发光对温度具有良好的依赖性,有望成为潜在的温度传感器材料。
As a new type of upconversion matrix, NaBiF,4, has been found with excellent luminescence properties. In this paper, polyvinyl pyrrolidone(PVP) was used as the surfactant, and the water-soluble NaBiF,4,:Er,3+,/Yb,3+,/Mn,2+, particles were successfully prepared by a solvothermal synthesis. The crystal phase, morphology and luminescence properties of the microcrystals were studied. Under the excitation of 980 nm laser, NaBiF,4,:Er,3+,/Yb,3+,/Mn,2+, microcrystals show excellent upconversion luminescence(UCL). The upconversion emission intensity increased at first and then decreased with the increase of the dopant concentrations of Mn,2+, ions. Moreover, the temperature-dependent UCL properties of NaBiF,4,:Yb,3+,/Er,3+,/Mn,2+, were investigated systematically under 980 nm excitation. The microcrystals could be a potential candidate for sensitive temperature sensor.
上转换发光NaBiF4PVP表面活性剂温度依赖性
upconversion luminescenceNaBiF4PVP surfactanttemperature-dependence
REDDY K L, PRABHAKAR N, ARPPE R, et al.. Microwave-assisted one-step synthesis of acetate-capped NaYF4:Yb/Er upconversion nanocrystals and their application in bioimaging[J].J. Mater. Sci., 2017, 52(10):5738-5750.
TAN H H, XIE S W, XU J X, et al.. Branched NaYF4:Yb, Er up-conversion phosphors with luminescent properties for anti-counterfeiting application[J].Sci. Adv. Mater., 2017, 9(12):2223-2233.
KRAFT M, WVRTH C, MUHR V, et al.. Particle-size-dependent upconversion luminescence of NaYF4:Yb, Er nanoparticles in organic solvents and water at different excitation power densities[J].Nano Res., 2018, 11(12):6360-6374.
GEITENBEEK R G, PRINS P T, ALBRECHT W, et al.. NaYF4:Er3+, Yb3+/SiO2 core/shell upconverting nanocrystals for luminescence thermometry up to 900 K[J].J. Phys. Chem. C, 2017, 121(6):3503-3510.
WANG G F, QIN W P, ZHANG J S, et al.. Controlled synthesis and luminescence properties from cubic to hexagonal NaYF4:Ln3+ (Ln=Eu and Yb/Tm) microcrystals[J].J. Alloys Compd., 2009, 475(1-2):452-455.
RAFIEI MIANDASHTI A, KHOSRAVI KHORASHAD L, GOVOROV A O, et al.. Time-resolved temperature-jump measurements and theoretical simulations of nanoscale heat transfer using NaYF4:Yb3+:Er3+ upconverting nanoparticles[J].J. Phys. Chem. C, 2019, 123(6):3770-3780.
DUBEY A, SONI A K, KUMARI A,et al.. Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li+ phosphors for optical thermometry[J].J. Alloys Compd., 2017, 693:194-200.
GNANASAMMANDHAN M K, IDRIS N M, BANSAL A, et al.. Near-IR photoactivation using mesoporous silica-coated NaYF4:Yb, Er/Tm upconversion nanoparticles[J].Nat. Protocols, 2016, 11(4):688-713.
HOSSAN M Y, HOR A, LUU Q A, et al.. Explaining the nanoscale effect in the upconversion dynamics of β-NaYF4:Yb3+, Er3+ core and core-shell nanocrystals[J].J. Phys. Chem. C, 2017, 121(30):16592-16606.
ZHANG K K, ZHAO Q, QIN S R, et al.. Nanodiamonds conjugated upconversion nanoparticles for bio-imaging and drug delivery[J].J. Colloid Interface Sci., 2019, 537:316-324.
DU P, LUO L H, HUANG X Y, et al.. Ultrafast synthesis of bifunctional Er3+/Yb3+-codoped NaBiF4 upconverting nanoparticles for nanothermometer and optical heater[J].J. Colloid Interface Sci., 2018, 514:172-181.
CHUNG J W, PARK J Y, YANG H K. Ultra-fast synthesis and photoluminescence properties of red-emitting NaBiF4:Eu3+ nanophosphors by various NH4F concentrations[J].J. Lumin., 2019, 211:176-182.
YU J M, WANG Y M, HE Y X, et al.. A novel strategy to obtain hollow NaBiF4:Yb3+/Er3+ upconversion nanospheres by one step coprecipitation[J].J. Nanosci. Nanotechnol., 2020, 20(10):6257-6265.
ANTONIAK M A, ZELEWSKI S J, OLIVA R, et al.. Combined temperature and pressure sensing using luminescent NaBiF4:Yb, Er nanoparticles[J].ACS Appl. Nano Mater., 2020, 3(5):4209-4217.
LEI P P, AN R, ZHAI X S, et al.. Benefits of surfactant effects on quantum efficiency enhancement and temperature sensing behavior of NaBiF4 upconversion nanoparticles[J].J. Mater. Chem. C, 2017, 5(37):9659-9665.
ZHANG P, QIN W P, LI D G, et al.. Impurity doping:a novel strategy for selective synthesis of YF3 and NaYF4 crystals[J].CrystEngComm, 2017, 19(23):3215-3221.
DU K M, XU X, YAO S, et al.. Enhanced upconversion luminescence and controllable phase/shape of NaYF4:Yb/Er crystals through Cu2+ ion doping[J].CrystEngComm, 2018, 20(14):1945-1953.
LI L P, QIN F, ZHOU Y, et al.. Temperature sensing based on the 4F7/2/4S3/2-4I15/2 upconversion luminescence intensity ratio in NaYF4:Er3+/Yb3+ nanocrystals[J].J. Lumin., 2019, 206:335-341.
TIAN Y Y, TIAN Y, HUANG P, et al.. Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route[J].Chem. Eng. J., 2016, 297:26-34.
TONG L L, LI X P, ZHANG J S, et al.. NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structured nanocalorifier with optical temperature probe[J].Opt. Express, 2017, 25(14):16047-16058.
0
浏览量
84
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构