1.同济大学 材料科学与工程学院, 上海 201804
[ "廖华珍(1995-), 女, 福建龙岩人, 博士研究生, 2017年于华侨大学获得学士学位, 主要从事稀土掺杂发光材料的研究。E-mail:liaohuazhen@tongji.edu.cn" ]
[ "叶松(1978-), 女, 辽宁鞍山人, 博士, 副教授, 博士研究生导师, 2007年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事稀土掺杂发光材料的研究。E-mail:yesong@tongji.edu.cn" ]
扫 描 看 全 文
廖华珍, 肖萍, 叶松, 等. NaYF4:Yb3+,
Hua-zhen LIAO, Ping XIAO, Song YE, et al. Highly Enhanced Upconversion Luminescence Through Partially Isolate Yb3+ in Core-shell-shell Structured NaYF4: Yb3+,
廖华珍, 肖萍, 叶松, 等. NaYF4:Yb3+,
Hua-zhen LIAO, Ping XIAO, Song YE, et al. Highly Enhanced Upconversion Luminescence Through Partially Isolate Yb3+ in Core-shell-shell Structured NaYF4: Yb3+,
采用共沉淀法合成了尺寸小于10 nm的Yb,3+,/,Ln,3+,(,Ln,=Ho,3+,,Tm,3+,)掺杂β-NaYF,4,核纳米晶,在此基础上构建了NaYF,4,:Yb,3+,,,Ln,3+,@NaYF,4,:Yb,3+,@NaYF,4,核-双层壳结构纳米晶,并通过XRD和TEM测试证明了中间活性壳和最外层惰性壳的成功包覆。光谱结果表明,在活性核和活性壳中分别掺杂Yb,3+,、并进一步生长最外层的惰性壳能够有效地提高Ho,3+,和Tm,3+,的上转换发射强度,这是由核-双层壳结构纳米晶对980 nm激发光的吸收增强以及Yb,3+,浓度猝灭阈值的提高所引起的高效能量传递共同导致的。此外,通过调节中间壳层中的Yb,3+,掺杂浓度,可以获得高效可调发光。本研究为开发多色高效上转换发光纳米晶提供了一条有效的途径。
In this research, the Yb,3+,/,Ln,3+, (,Ln,=Ho,3+, and Tm,3+,) doped β-NaYF,4, core nanocrystals(NCs) with sub-10 nm size were synthesized with co-precipitation method, based on which the core-shell-shell structured NaYF,4,:Yb,3+,Ln,3+,@NaYF,4,:Yb,3+,@NaYF,4, NCs were constructed. The successfully growth of the middle active-shell and the outmost inert-shell were proved by XRD and TEM measurements. The spectral results indicated that partially isolate Yb,3+, dopant in active-core and active-shell and the growth of the outmost inert-shell can effectively improve the upconversion(UC) emission intensity of Ho,3+, and Tm,3+, which is resulted from the enhanced absorption of 980 nm excitation light and energy transfer efficiency ascribing to the increased Yb,3+, concentration quenching threshold. Moreover, through adjusting Yb,3+, doping concentration in the middle-shell, the tunable emission can be obtained. This research suggested a general route for the development of highly-efficient luminescent upconversion nanocrystals(UCNCs) in a broad color range.
上转换发光核-双层壳结构β-NaYF4
upconversioncore-shell-shell structureβ-NaYF4
WANG F, BANERJEE D, LIU Y S, et al.. Upconversion nanoparticles in biological labeling, imaging, and therapy[J]. Analyst, 2010, 135(8):1839-1854.
LI H, WANG X, HUANG D X, et al.. Recent advances of lanthanide-doped upconversion nanoparticles for biological applications[J]. Nanotechnology, 2020, 31(7):072001.
DAI X R, LEI L, XIA J N, et al.. Effect of Yb3+ concentration and location on the thermally enhanced upconversion emission intensity of Yb/Ho:Na3ZrF7 nanocrystals[J]. J. Alloys Compd., 2018, 766:261-265.
ZHOU J, LIU Q, FENG W, et al.. Upconversion luminescent materials:advances and applications[J]. Chem. Rev., 2015, 115(1):395-465.
WANG R, YUAN M H, ZHANG C F, et al.. Tunable multicolor and enhanced red emission of monodisperse CaF2:Yb3+/Ho3+ microspheres via Mn2+ doping[J]. Opt. Mater., 2018, 79:403-407.
CHEN G Y, QIU H L, PRASAD P N, et al.. Upconversion nanoparticles:design, nanochemistry, and applications in theranostics[J]. Chem. Rev., 2014, 114(10):5161-5214.
ZHANG J H, HAO Z D, LI J, et al.. Observation of efficient population of the red-emitting state from the green state by non-multiphonon relaxation in the Er3+-Yb3+ system[J]. Light Sci. Appl., 2015, 4(1):e239.
YIN W Y, ZHAO LN, ZHOU L J, et al.. Enhanced red emission from GdF3:Yb3+, Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging[J]. Chem. -Eur. J., 2012, 18(30):9239-9245.
ZHANG F, HAUSHALTER R C, HAUSHALTER R W, et al.. Rare-earth upconverting nanobarcodes for multiplexed biological detection[J]. Small, 2011, 7(14):1972-1976.
CHENG L, YANG K, LI Y G, et al.. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy[J]. Angew. Chem. Int. Ed., 2011, 50(32):7385-7390.
TIAN Y Y, TIAN Y, HUANG P, et al.. Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route[J]. Chem. Eng. J., 2016, 297:26-34.
QIN X, SHEN L, LIANG L L, et al.. Suppression of defect-induced quenching via chemical potential tuning:a theoretical solution for enhancing lanthanide luminescence[J]. J. Phys. Chem. C, 2019, 123(17):11151-11161.
LI A H, CHEN G Y. Controlling lanthanide-doped upconversion nanoparticles for brighter luminescence[J]. J. Phys. D Appl. Phys., 2020, 53(4):043001.
ZHAN S P, WU X F, TAN C, et al.. Enhanced upconversion based on the ultrahigh local field enhancement in a multilayered UCNPs-metamaterial composite system[J]. J. Alloys Compd., 2018, 735:372-376.
PENG H Y, DING B B, MA Y C, et al.. Sequential growth of sandwiched NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb core-shell-shell nanoparticles for photodynamic therapy[J]. Appl. Surf. Sci., 2015, 357:2408-2414.
CHEN G Y, QIU H L, FAN R W, et al.. Lanthanide-doped ultrasmall yttrium fluoridenanoparticles with enhanced multicolor upconversion photoluminescence[J]. J. Mater. Chem., 2012, 22(38):20190-20196.
YE S, XIAO P, LIAO H Z, et al.. Fast synthesis of sub-10 nm β-NaYF4:Yb3+, Er3+@NaYF4 core-shell upconversion nanocrystals mediated by oleate ligands[J]. Mater. Res. Bull., 2018, 103:279-284.
ZHAO J B, JIN D Y, SCHARTNER E P, et al.. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence[J]. Nat. Nanotechnol., 2013, 8(10):729-734.
CHEN B, LIU Y, XIAO Y, et al.. Amplifying excitation-power sensitivity of photon upconversion in a NaYbF4:Ho nanostructure for direct visualization of electromagnetic hotspots[J]. J. Phys. Chem. Lett., 2016, 7(23):4916-4921.
YU H, HUANG Q M, MA E, et al.. Tuning crystal field symmetry of hexagonal NaY0.92Yb0.05Er0.03F4 by Ti4+ codoping for high-performance upconversion[J]. J. Alloys Compd., 2014, 613:253-259.
ZHANG H, LI Y J, IVANOV I A, et al.. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells[J]. Angew. Chem., Int. Ed., 2010, 49(16):2865-2868.
LIU N, QIN W P, QIN G S, et al.. Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb, Tm hybrid nanostructures[J]. Chem. Commun., 2011, 47(27):7671-7673.
LU W L, CHENG L H, ZHONG H Y, et al.. Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors[J]. J. Phys. D Appl. Phys., 2010, 43(8):085404.
WANG Z J, MEIJERINK A. Concentration quenching in upconversion nanocrystals[J]. J. Phys. Chem. C, 2018, 122(45):26298-26306.
LIU X M, KONG X G, ZHANG Y L, et al.. Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications[J]. Chem. Commun., 2011, 47(43):11957-11959.
XIAO P, YE S, LIAO H Z, et al.. Magnetic-optical bifunctional properties of sub-20 nm β-NaYF4:Yb3+, Er3+@NaGdF4 core-shell nanocrystals[J]. J. Alloys Compd., 2018, 767:775-781.
XIAO P, YE S, LIAO H Z, et al.. Extended color tunability and efficient white-light generation through the construction of β-NaYF4:Yb3+/Tm3+/Ho3+@NaYF4 core-shell structured nanocrystals[J]. J. Solid State Chem., 2019, 275:63-69.
FISCHER S, BRONSTEIN N D, SWABECK J K, et al.. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals[J]. Nano Lett., 2016, 16(11):7241-7247.
DING M Y, HOU J J, YUAN Y J, et al.. Nd3+/Yb3+ cascade-sensitized single-band red upconversion emission in active-core/active-shell nanocrystals[J]. Nanotechnology, 2018, 29(34):345704.
ZHANG F, CHE R C, LI X M, et al.. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level:shell thickness dependence in upconverting optical properties[J]. Nano Lett., 2012, 12(6):2852-2858.
CHIEN H W, WU C H, YANG C H, et al.. Multiple doping effect of LiYF4:Yb3+/Er3+/Ho3+/Tm3+@LiYF4:Yb3+ core/shell nanoparticles and its application in Hg2+ sensing detection[J]. J. Alloys Compd., 2019, 806:272-282.
LIAO H Z, YE S, SHI Y L, et al.. Optical-magnetic bifunctional sub-20 nm β-NaYF4:Yb3+/Er3+@NaGdF4:Yb3+/Nd3+@NaGdF4 core-shell-shell nanoparticles triggered by 808 nm light[J]. Opt. Mater., 2019, 98:109489.
WANG T, ZHOU H F, YU Z C, et al.. 808 nm excited multicolor upconversion tuning through energy migration in core-shell-shell nanoarchitecture[J]. J. Phys. Chem. C, 2018, 122(18):10113-10124.
MAHATA M K, LEE K T. Development of near-infrared sensitized core-shell-shell upconverting nanoparticles as pH-responsive probes[J]. Nanoscale Adv., 2019, 1(6):2372-2381.
LI X M, SHEN D K, YANG J P, et al.. Successive layer-by-layer strategy for multi-shell epitaxial growth:shell thickness and doping position dependence in upconverting optical properties[J]. Chem. Mater., 2013, 25(1):106-112.
SIEFE C, MEHLENBACHER R D, PENG C S, et al.. Sub-20 nm core-shell-shell nanoparticles for bright upconversion and enhanced Förster resonant energy transfer[J]. J. Am. Chem. Soc., 2019, 141(42):16997-17005.
HONG A R, KIM Y, LEE T S, et al.. Intense red-emitting upconversion nanophosphors (800 nm-driven) with a core/double-shell structure for dual-modal upconversion luminescence and magnetic resonance in vivo imaging applications[J]. ACS Appl. Mater. Interfaces, 2018, 10(15):12331-12340.
WU Q B, LIN S T, XIE Z X, et al.. Tunable upconversion luminescence of monodisperse Y2O3:Er3+/Yb3+/Tm3+ nanoparticles[J]. Appl. Surf. Sci., 2017, 424:164-169.
LIAO J S, LIN Y F, CHEN Y J, et al.. Radiative-trapping and fluorescence-concentration quenching effects of Yb:YAl3(BO3)4 crystals[J]. J. Opt. Soc. Am. B, 2006, 23(12):2572-2580.
BALAJI S, SONTAKKE A D, ANNAPURNA K. Yb3+ ion concentration effects on~1μm emission in tellurite glass[J]. J. Opt. Soc. Am. B, 2012, 29(7):1569-1579.
JOHNSON L F, GEUSIC J E, GUGGENHEIM H J, et al.. Comments on materials for efficient infrared conversion[J]. Appl. Phys. Lett., 1969, 15(2):48-50.
ZHANG X X, BASS M, CHAI B H T. Concentration dependence of Yb, Ho upconversion energy transfer in KYF4[C].Advanced Solid State Lasers 1993, New Orleans, 1993: 454-458.
0
浏览量
82
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构