浏览全部资源
扫码关注微信
1.北京交通大学 理学院, 光电子技术研究所, 发光与光信息教育部重点实验室, 北京 100044
2.西南大学 物理科学与技术学院, 发光与实时分析教育部重点实验室, 重庆 400715
3.美国田纳西大学 材料科学与工程系, 田纳西州 诺克斯维尔 37996
[ "潘睿亨(1994-), 男, 甘肃通渭人, 博士研究生, 2019年于西南大学获得硕士学位, 主要从事光电材料与器件中的自旋电子学的研究。E-mail:19118037@bjtu.edu.cn" ]
[ "王恺(1984-), 男, 陕西西安人, 博士, 副教授, 2015年于荷兰特文特大学获得博士学位, 主要从事有机半导体和钙钛矿自旋光电子学的研究。E-mail:kaiwang@bjtu.edu.cn" ]
收稿日期:2020-04-14,
录用日期:2020-5-8,
纸质出版日期:2020-07
移动端阅览
潘睿亨, 汤仙童, 李金鹏, 等. 有机-无机杂化钙钛矿中的自旋输运和磁场效应[J]. 发光学报, 2020,41(7):753-769.
Rui-heng PAN, Xian-tong TANG, Jin-peng LI, et al. Spin Transport and Magnetic Field Effects in Organic-inorganic Hybrid Perovskites[J]. Chinese journal of luminescence, 2020, 41(7): 753-769.
潘睿亨, 汤仙童, 李金鹏, 等. 有机-无机杂化钙钛矿中的自旋输运和磁场效应[J]. 发光学报, 2020,41(7):753-769. DOI: 10.37188/fgxb20204107.0753.
Rui-heng PAN, Xian-tong TANG, Jin-peng LI, et al. Spin Transport and Magnetic Field Effects in Organic-inorganic Hybrid Perovskites[J]. Chinese journal of luminescence, 2020, 41(7): 753-769. DOI: 10.37188/fgxb20204107.0753.
有机-无机杂化钙钛矿(OIHPs)是现阶段较为新颖的光电子材料之一,已被广泛地应用于太阳能电池和发光领域。然而,该类材料已被证实具有较强的自旋轨道耦合和Rashba效应,并且具备较高的载流子迁移率和消光系数。因此,这为实现自旋注入和自旋调控提供了重要依据。本文从三个方面对有机-无机杂化钙钛矿的自旋光电子学展开论述,首先是自旋极化电子在钙钛矿自旋器件中的输运研究以及铁磁-钙钛矿自旋界面研究;其次,是该材料在激发态下的磁场效应研究;最后,就钙钛矿自旋光电子学未来发展进行了探讨和评论。
Organic-inorganic hybrid perovskites(OIHPs) are one of the most novel optoelectronic hybrid materials at present. They have been widely studied in the fields of solar cells and light emitting devices. Nevertheless
these materials have been demonstrated to exhibit relatively stronger spin-orbit coupling(SOC) and Rashba effect
as well as larger carrier mobilities and extinction coefficients. Thus
these form important bases for realizing spin injection and spin manipulation. Herein
spin-optoelectronics of OIHPs will be discussed by three aspects. First
the spin-polarized electronic transport and ferromagnetic-OIHPs spinterfaces are introduced. Then
magnetic field effects of OIHPs at excited states are given. Finally
the future development of OIHPs in the spin-optoelectronics is deeply discussed and commented.
LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science , 2012, 338(6107):643-647.
KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci. Rep. , 2012, 2:591-1-7.
BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature , 2013, 499(7458):316-319.
LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature , 2013, 501(7476):395-398.
MALINKIEWICZ O, YELLA A, LEE Y H, et al. Perovskite solar cells employing organic charge-transport layers[J]. Nat. Photonics , 2014, 8(2):128-132.
MEI A Y, LI X, LIU L F, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science , 2014, 345(6194):295-298.
GREEN M A, HO-BAILLIE A, SNAITH H J.The emergence of perovskite solar cells[J]. Nat. Photonics , 2014, 8(7):506-514.
RASHBA E I, SHEKA V I. Electric-dipole spin resonances[J]. Mod. Probl. Condens. Matter Sci. , 1991, 27(1):131-206.
WANG J Y, ZHANG C, LIU H L, et al. Tunable spin characteristic properties in spin valve devices based on hybrid organic-inorganic perovskites[J] . Adv. Mater. , 2019, 31(41):1904059.
WANG K, YANG Q, DUAN J S, et al. Spin-polarized electronic transport through ferromagnet/organic-inorganic hybrid perovskite spinterfaces at room temperature[J]. Adv. Mater. Interfaces , 2019, 6(19):1900718.
LI M X, LI L, MUKHERJEE R, et al. Magnetodielectric response from spin-orbital interaction occurring at interface of ferromagnetic Co and organometal halide perovskite layers via Rashba effect[J]. Adv. Mater. , 2017, 29(6):1603667-1-6.
SUN D L, ZHANG C, KAVAND M, et al. Surface-enhanced spin current to charge current conversion efficiency in CH 3 NH 3 PbBr 3 -based devices[J]. J. Chem. Phys. , 2019, 151(17):174709-1-8.
ZHANG C, SUN D, SHENG C X, et al. Magnetic field effects in hybrid perovskite devices[J]. Nat. Phys. , 2015, 11(5):427-434.
HSIAO Y C, WU T, LI M X, et al. Magneto-optical studies on spin-dependent charge recombination and dissociation in perovskite solar cells[J]. Adv. Mater. , 2015, 27(18):2899-2906.
TANG X T, PAN R H, ZHAO X, et al. Achievement of high-level reverse intersystem crossing in rubrene-doped organic light-emitting diodes[J]. J. Phys. Chem. Lett. , 2020, 11(8):2804-2811.
PAN R H, TANG X T, HU Y Q, et al. Extraordinary magnetic field effects mediated by spin-pair interaction and electron mobility in thermally activated delayed fluorescence-based OLEDs with quantum-well structure[J]. J. Mater. Chem. C, 2019, 7(8):2421-2429.
TANG X T, HU Y Q, JIA W Y, et al. Intersystem crossing and triplet fusion in singlet-fission-dominated rubrene-based OLEDs under high bias current[J]. ACS Appl. Mater. Interfaces , 2018, 10(2):1948-1956.
SUN D L, EHRENFREUND E, VARDENY Z V. The first decade of organic spintronics research[J]. Chem. Commun. , 2014, 50(15):1781-1793.
SAGAR R U R, ZHANG X Z, WANG J M, et al. Negative magnetoresistance in undoped semiconducting amorphous carbon films[J]. J. Appl. Phys. , 2014, 115(12):123708.
潘睿亨, 汤仙童, 邓金秋, 等.利用有机磁效应研究热活化延迟荧光量子阱器件中的微观机制[J].中国科学:技术科学, 2018, 48(7):745-754.
PAN R H, TANG X T, DENG J Q, et al. Investigation of micro-mechanism in thermally activated delayed fluorescence quantum well devices by utilizing organic magnetic effects[J]. Sci. Sinica Technol. , 2018, 48(7):745-754. (in Chinese)
DEVIR-WOLFMAN A H, KHACHATRYAN B, GAUTAM B R, et al. Short-lived charge-transfer excitons in organic photovoltaic cells studied by high-field magneto-photocurrent[J]. Nat. Commun. , 2014, 5:4529-1-7.
WANG J P, CHEPELIANSKII A, GAO F, et al. Control of exciton spin statistics through spin polarization in organic optoelectronic devices[J]. Nat. Commun. , 2012, 3:1191-1-6.
GAUTAM B R, NGUYEN T D, EHRENFREUND E, et al. Magnetic field effect on excited-state spectroscopies of π-conjugated polymer films[J]. Phys. Rev. B, 2012, 85(20):205207.
STEINER U E, ULRICH T. Magnetic field effects in chemical kinetics and related phenomena[J]. Chem. Rev. , 1989, 89(1):51-147.
BLOOM F L, WAGEMANS W, KEMERINK M, et al. Separating positive and negative magnetoresistance in organic semiconductor devices[J]. Phys. Rev. Lett. , 2007, 99(25):257201-1-4.
HU B, YAN L, SHAO M. Magnetic-field effects in organic semiconducting materials and devices[J]. Adv. Mater. , 2009, 21(14-15):1500-1516.
NGUYEN T D, HUKIC-MARKOSIAN G, WANG F J, et al. Isotope effect in spin response of π-conjugated polymer films and devices[J]. Nat. Mater. , 2010, 9(4):345-352.
瞿子涵, 储泽马, 张兴旺, 等.高效绿光钙钛矿发光二极管研究进展[J].物理学报, 2019, 68(15):158504-1-9.
QU Z H, CHU Z M, ZHANG X W, et al. Research progress of efficient green perovskite light emitting diodes[J]. Acta Phys. Sinica , 2019, 68(15):158504-1-9. (in Chinese)
魏应强, 徐磊, 彭其明, 等.钙钛矿的Rashba效应及其对载流子复合的影响[J].物理学报, 2019, 68(15):158506-1-20.
WEI Y Q, XU L, PENG Q M, et al. Rashba effect in perovskites and its influences on carrier recombination[J]. Acta Phys. Sinica , 2019, 68(15):158506-1-20. (in Chinese)
MOSCONI E, ETIENNE T, DE ANGELIS F. Rashba band splitting in organohalide lead perovskites:bulk and surface effects[J]. J. Phys. Chem. Lett. , 2017, 8(10):2247-2252.
AMAT A, MOSCONI E, RONCA E, et al. Cation-induced band-gap tuning in organohalide perovskites:interplay of spin-orbit coupling and octahedra tilting[J]. Nano Lett. , 2014, 14(6):3608-3616.
ETIENNE T, MOSCONI E, DEANGELIS F. Dynamical rashba band splitting in hybrid perovskites modeled by local electric fields[J]. J. Phys. Chem. C, 2018, 122(1):124-132.
HU S B, GAO H, QI Y T, et al. Dipole order in halide perovskites:polarization and rashba band splitting[J]. J. Phys. Chem. C, 2017, 121(41):23045-23054.
KEPENEKIAN M, ROBLES R, KATAN C, et al. Rashba and dresselhaus effects in hybrid organic-inorganic perovskites:from basics to devices[J]. ACS Nano , 2015, 9(12):11557-11567.
KIM M, IM J, FREEMAN A J, et al. Switchable S =1/2 and J =1/2 Rashba bands in ferroelectric halide perovskites[J]. Proc. Natl. Acad. Sci. USA , 2014, 111(19):6900-6904.
GAO W W, GAO X, ABTEW T A, et al. Quasiparticle band gap of organic-inorganic hybrid perovskites:crystal structure, spin-orbit coupling, and self-energy effects[J]. Phys. Rev. B, 2016, 93(8):085202-1-7.
XIONG Z H, WU D, VARDENY Z V, et al. Giant magnetoresistance in organic spin-valves[J]. Nature , 2004, 427(6977):821-824.
ZHUMEKENOV A A, SAIDAMINOV M I, HAQUE M A, et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length[J]. ACS Energy Lett. , 2016, 1(1):32-37.
JIA Y F, KERNER R A, GREDE A J, et al. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor[J]. Nat. Photonics , 2017, 11(12):784-788.
GALKOWSKI K, MITIOGLU AA, SURRENTE A, et al. Spatially resolved studies of the phases and morphology of methylammonium and formamidinium lead tri-halide perovskites[J]. Nanoscale , 2017, 9(9):3222-3230.
LAFALCE E, ZHANG C, LIU X J, et al. Role of intrinsic ion accumulation in the photocurrent and photocapacitive responses of MAPBBr 3 photodetectors[J]. ACS Appl. Mater. Interfaces , 2016, 8(51):35447-35453.
GRÜNEWALD M, GÖCKERITZ R, HOMONNAY N, et al. Vertical organic spin valves in perpendicular magnetic fields[J]. Phys. Rev. B, 2013, 88(8):085319-1-6.
LOU X H, ADELMANN C, CROOKER S A, et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices[J]. Nat. Phys. , 2007, 3(3):197-202.
KEPENEKIAN M, EVEN J. et al. Rashba and Dresselhaus couplings in halide perovskites:accomplishments and opportunities for spintronics and spin-orbitronics[J]. J. Phys. Chem. Lett., 2017, 8(14):3362-3370.
MANCHON A, KOO H C, NITTA J, et al. New perspectives for Rashba spin-orbit coupling[J]. Nat. Mater. , 2015, 14(9):871-882.
DEORANI P, SON J, BANERJEE K, et al. Observation of inverse spin Hall effect in bismuth selenide[J]. Phys. Rev. B, 2014, 90(9):094403-1-6.
JAMALI M, LEE J S, JEONG J S, et al. Giant spin pumping and inverse spin hall effect in the presence of surface and bulk spin-orbit coupling of topological insulator Bi 2 Se 3 [J]. Nano , 2015, 15(10):7126-7132.
LESNE E, FU F, OYARZUN S, et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces[J]. Nat. Mater. , 2016, 15(12):1261-1266.
WANG H, KALLY J, LEE J S, et al. Surface-state-dominated spin-charge current conversion in topological-insulator-ferromagnetic-insulator heterostructures[J]. Phys. Rev. Lett. , 2016, 117(7):076601.
ZHANG W, JUNGFLEISCH M B, JIANG W J, et al. Spin pumping and inverse Rashba-Edelstein effect in NiFe/Ag/Bi and NiFe/Ag/Sb[J]. J. Appl. Phys. , 2015, 117(17):17C727.
NIESNER D, WILHELM M, LEVCHUK I, et al. Giant Rashba splitting in CH 3 NH 3 PbBr 3 organic-inorganic perovskite[J] . Phys. Rev. Lett. , 2016, 117(12):126401.
SHIOMI Y, NOMURA K, KAJIWARA Y, et al. Spin-electricity conversion induced by spin injection into topological insulators[J]. Phys. Rev. Lett. , 2014, 113(19):196601.
ANDO K, TAKAHASHI S, IEDA J, et al. Inverse spin-Hall effect induced by spin pumping in metallic system[J]. J. Appl. Phys. , 2011, 109(10):103913-1-11.
ANDO K, TAKAHASHI S, IEDA J, et al. Electrically tunable spin injector free from the impedance mismatch problem[J]. Nat. Mater. , 2011, 10(9):655-659.
SÁNCHEZ J C R, VILA L, DESFONDS G, et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials[J]. Nat. Commun. , 2013, 4:2944-1-7.
DI SANTE D, BARONE P, BERTACCO R, et al. Electric control of the giant Rashba effect in bulk GeTe[J]. Adv. Mater. , 2013, 25(4):509-513.
HE L, LI M X, URBAS A, et al. Optically tunable magneto-capacitance phenomenon in organic semiconducting materials developed by electrical polarization of intermolecular charge-transfer states[J]. Adv. Mater. , 2014, 26(23):3956-3961.
ZANG H D, YAN L, LI M X, et al. Magneto-dielectric effects induced by optically-generated intermolecular charge-transfer states in organic semiconducting materials[J]. Sci. Rep. , 2013, 3:2812-1-6.
LI M X, HE L, XU H X, et al. Interaction between optically-generated charge-transfer states and magnetized charge-transfer states toward magneto-electric coupling[J]. J. Phys. Chem. Lett. , 2015, 6(21):4319-4325.
EVEN J, PEDESSEAU L, JANCU J M, et al. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications[J]. J. Phys. Chem. Lett. , 2013, 4(17):2999-3005.
KIM J, LEE S C, LEE S H, et al. Importance of orbital interactions in determining electronic band structures of organo-lead iodide[J]. J. Phys. Chem. Lett. , 2015, 119(9):4627-4634.
YIN W J, SHI T T, YAN Y F. Unusual defect physics in CH 3 NH 3 PbI 3 perovskite solar cell absorber[J]. Appl. Phys. Lett. , 2014, 104(6):063903-1-4.
MARCHIORO A, TEUSCHER J, FRIEDRICH D, et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells[J]. Nat. Photonics , 2014, 8(3):250-255.
NAKANOTANI H, SASABE H, ADACHI C. Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density[J]. Appl. Phys. Lett. , 2005, 86(21):213506.
BALDO M A, ADACHI C, FORREST S R. Transient analysis of organicelectrophosphorescence. Ⅱ. Transient analysis of triplet-triplet annihilation[J]. Phys. Rev. B, 2000, 62(16):10967-10977.
0
浏览量
492
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构