1.沈阳理工大学 理学院, 辽宁 沈阳 110159
2.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
[ "张鑫鑫(1998-)辽宁大连人,硕士研究生,沈阳理工大学,主要从事过渡金属与稀土发光材料方面的研究E-mail: 13644935120@163.com" ]
[ "宋建宇(1969-) ,男,辽宁省盖州人,博士,副教授,2009 年于东北大学获得博士学位,主要从事凝聚态磁性物理与光电器件性能研究。" ]
[ "沈龙海( 1977-) ,男,黑龙江哈尔滨人,博士,教授,2006 年于吉林大学获得博士学位,主要从事功能材料制备与光电性能研究。E-mail: shenlonghai@sylu.edu.cn" ]
[ "张亮亮(1987- ),男,山东烟台人,博士,副研究员,2015年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事发光材料方面的研究。E-mail: zhangliangliang@ciomp.ac.cn" ]
扫 描 看 全 文
张鑫鑫,宋建宇,雷云龙等.亚微米尺寸K2SiF6:Mn4+红色荧光粉的沉淀法合成及其发光性能研究[J].发光学报,
ZHANG Xinxin,SONG Jianyu,LEI Yunlong,et al.Synthesis and Luminescence Properties of Submicron K2SiF6:Mn4+ Red Phosphor by Precipitation Method[J].Chinese Journal of Luminescence,
张鑫鑫,宋建宇,雷云龙等.亚微米尺寸K2SiF6:Mn4+红色荧光粉的沉淀法合成及其发光性能研究[J].发光学报, DOI:10.37188/CJL.20230262
ZHANG Xinxin,SONG Jianyu,LEI Yunlong,et al.Synthesis and Luminescence Properties of Submicron K2SiF6:Mn4+ Red Phosphor by Precipitation Method[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230262
亚微米尺寸K,2,SiF,6,:Mn,4+ ,荧光粉被认为是Micro-LED显示领域的变革性技术,但是小粒径K,2,SiF,6,:Mn,4+ ,荧光粉的合成技术不成熟,难以实现亚微米尺度下的高效发光。因此,本文报道了一种亚微米级K,2,SiF,6,:Mn,4+ ,荧光粉的沉淀合成新方法。经荧光光谱分析,该荧光粉在450 nm蓝光激发下展现出典型的Mn,4+ ,红色发光,其内量子效率高达94.9 %。经SEM观察,合成的荧光粉粒径分布在150 ~ 450 nm范围。该荧光粉具备良好的热猝灭性能,在443 K保持初始发光强度的102 %。将绿色荧光粉β-sialon:Eu,2+, 和K,2,SiF,6,:Mn,4+ ,混合涂覆在蓝光芯片上制成白光LED,其色域覆盖范围达到133 % NTSC,在驱动电流从10 mA增加到120 mA的情况下,色温波动 ~ 10 %、显色指数波动 ~ 2 %,总体性能保持稳定。本文将为亚微米尺寸K,2,SiF,6,:Mn,4+ ,荧光粉的合成提供新的方法,以促进Micro-LED显示技术的进一步发展。
Sub-micrometer-sized K,2,SiF,6,:Mn,4+ ,phosphors hold transformative potential in the Micro-LED display industry. However, the synthesis of small-diameter K,2,SiF,6,:Mn,4+, phosphors remains a challenge due to immature technology, hindering efficient luminescence at the sub-micrometer scale. This paper introduces a novel method for synthesizing sub-micrometer-sized K,2,SiF,6,:Mn,4+, phosphors via precipitation. Fluorescence spectroscopy analysis reveals that the phosphor displays typical Mn,4+, red emission under 450 nm blue light excitation, with an internal quantum efficiency reaching 94.9 %. SEM observation indicates that the synthesized phosphor particles exhibit a size distribution between 150 and 450 nm. The phosphor demonstrates excellent thermal quenching performance, maintaining 102 % of the initial luminescence intensity at 443 K. A white LED was fabricated by combining green phosphor β-sialon:Eu,2+, and K,2,SiF,6,:Mn,4+, and applying it to a blue chip. The color gamut coverage achieved 133 % NTSC, and the color temperature and color rendering index fluctuated by approximately 10 % and 2 % respectively when the driving current increased from 10 mA to 120 mA, indicating overall stable performance. This paper offers fresh insights into the synthesis of sub-micrometer-sized K,2,SiF,6,:Mn,4+, phosphors, contributing to the advancement of Micro-LED display technology.
荧光粉亚微米尺寸Mirco-LED合成方法
PhosphorSubmicron-sizeMirco-LEDSynthesis
JI H-L, ZHANG P-P, CHEN N-J, et al. Micro-LED display: Recent progress and future challenges [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(8): 1101-1012. doi: 10.37188/cjlcd.2021-0063http://dx.doi.org/10.37188/cjlcd.2021-0063
LEE H E, SHIN J H, PARK J H, et al. Micro Light-Emitting Diodes for display and flexible biomedical applications [J]. Advanced Functional Materials, 2019, 29(24): 1808075. doi: 10.1002/adfm.201808075http://dx.doi.org/10.1002/adfm.201808075
LIU Z, LIN C-H, B-RHYUN, et al. Micro-light-emitting diodes with quantum dots in display technology [J]. Light: Science & Applications, 2020, 9(1): 83. doi: 10.1038/s41377-020-0268-1http://dx.doi.org/10.1038/s41377-020-0268-1
HUANG Y, E-LHSIANG, DENG M-Y, et al. Mini-LED, Micro-LED and OLED displays: present status andfuture perspectives [J].Light: Science & Applications, 2020, 9(1): 105. doi: 10.1038/s41377-020-0341-9http://dx.doi.org/10.1038/s41377-020-0341-9
CHOI M K, YANG J, HYEON T, et al. Flexible quantum dot light-emitting diodes for next-generation displays [J]. npj Flexible Electronics, 2018, 2(1): 1-14. doi: 10.1038/s41528-018-0023-3http://dx.doi.org/10.1038/s41528-018-0023-3
SUN Y, JIANG Y, SUN X W, et al. Beyond OLED: Efficient quantum dot Light-Emitting diodes for display and lighting application [J]. The Chemical Record, 2019, 19(8): 1729-1752. doi: 10.1002/tcr.201800191http://dx.doi.org/10.1002/tcr.201800191
YIN K, E-LHSIANG, ZOU J, et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications [J]. Light: Science & Applications, 2022, 11(1).161. doi: 10.1038/s41377-022-00851-3http://dx.doi.org/10.1038/s41377-022-00851-3
CHEN G-S, WEI B-Y, LEE C-T, et al. Monolithic Red/Green/Blue Micro-LEDs With HBR and DBR Structures [J]. Ieee Photonics Technology Letters, 2018, 30(3): 262-265. doi: 10.1109/lpt.2017.2786737http://dx.doi.org/10.1109/lpt.2017.2786737
HUANG L, LOU S, CAO L, et al. Surfactant- and HF-Free cation exchange synthesis of highly-efficient nanoscale K2SiF6:Mn4+ and potential usage for high-resolution Micro-LED display [J]. ACS Materials Letters, 2022, 4(9): 1716-1720. doi: 10.1021/acsmaterialslett.2c00533http://dx.doi.org/10.1021/acsmaterialslett.2c00533
LIN H-Y, C-WSHER, D-HHSIEH, et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold [J]. Photonics Research, 2017, 5(5): 411-416. doi: 10.1364/prj.5.000411http://dx.doi.org/10.1364/prj.5.000411
DUAN M, FENG Z, WU Y, et al. Inkjet-Printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion [J]. Advanced Materials Technologies, 2019, 4(12).1900779. doi: 10.1002/admt.201900779http://dx.doi.org/10.1002/admt.201900779
严子雯,严群,李典伦,等. 高度集成的μLED显示技术研究进展 [J]. 发光学报, 2020, 41(10): 1309. doi: 10.37188/CJL.20200191http://dx.doi.org/10.37188/CJL.20200191
YAN Z W,YAN Q,LI D L.Reseach progress of high integration density μLED display technology [J]. Chinese Journal of Luminescence. 2020, 41(10): 1309. doi: 10.37188/CJL.20200191http://dx.doi.org/10.37188/CJL.20200191
MING H, ZHAO Y, ZHOU Y, et al. Shining Mn4+ in 0D organometallic fluoride hosts towards highly efficient photoluminescence [J]. Advanced Optical Materials, 2022, 10(7): 2102141. doi: 10.1002/adom.202102141http://dx.doi.org/10.1002/adom.202102141
WAN P, LIANG Z, LUO P, et al. Reconstruction of Mn4+-free shell achieving highly stable red-emitting fluoride phosphors for light-emitting diodes [J]. Chemical Engineering Journal, 2021, 426:131350. doi: 10.1016/j.cej.2021.131350http://dx.doi.org/10.1016/j.cej.2021.131350
ZHU H, LIN C C, LUO W, et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes [J]. Nature Communications, 2014, 5: 4312. doi: 10.1038/ncomms5312http://dx.doi.org/10.1038/ncomms5312
HOU Z, TANG X, LUO X, et al. A green synthetic route to the highly efficient K2SiF6:Mn4+narrow-band red phosphor for warm white light-emitting diodes [J]. Journal of Materials Chemistry C, 2018, 6(11): 2741-2746. doi: 10.1039/c8tc00133bhttp://dx.doi.org/10.1039/c8tc00133b
XU H, HONG F, LIU G, et al. Green route synthesis and optimized luminescence of K2SiF6:Mn4+ red phosphor for warm WLEDs [J]. Optical Materials, 2020, 99: 109500. doi: 10.1016/j.optmat.2019.109500http://dx.doi.org/10.1016/j.optmat.2019.109500
LI Y, YU Y, ZHONG X, et al. K2SiF6:Mn4+@K2SiF6 phosphor with remarkable negative thermal quenching and high water resistance for warm white LEDs [J]. Journal of Luminescence, 2021, 234: 117968. doi: 10.1016/j.jlumin.2021.117968http://dx.doi.org/10.1016/j.jlumin.2021.117968
SON L T, T-TDOAN, PHUC P T, et al. Positron annihilation study of lattice defects and nanoporous structures in Mn4+ doped K2SiF6 nanophosphors exhibiting high quantum yield [J]. Radiation Physics and Chemistry, 2022, 195: 110064. doi: 10.1016/j.radphyschem.2022.110064http://dx.doi.org/10.1016/j.radphyschem.2022.110064
TIAN H, SETO T, WANG Y. HF-Free Microwave-Assisted synthesis of Nano-Micro-Sized K2SiF6:Mn4+ for microlED color conversion [J]. Small Methods, 2023, 7(9): 2300305. doi: 10.1002/smtd.202300305http://dx.doi.org/10.1002/smtd.202300305
BODE H, JENSSEN H, BANDTE F. UBER eine neue darstellung des kalium-hexafluoromanganats (IV) [J]. Angewandte Chemie Ngewandte Chemie, 1953, 65(11): 304-304. doi: 10.1002/ange.19530651108http://dx.doi.org/10.1002/ange.19530651108
GöBEL O F, ELSHOF J ETEN, KAMINSKY W, et al. Optical anomaly in artificial cubic hieratite, K2[SiF6] [J]. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2015, 71(3): 328-333.
NAULIN C, BOUGON R. Phase transition in the dioxygenyl salt O+2AsF-6 [J]. The Journal of Chemical Physics, 1976, 64(10): 4155-4158. doi: 10.1063/1.431985http://dx.doi.org/10.1063/1.431985
BRIK M G, SRIVASTAVA A M. On the optical properties of the Mn4+ ion in solids [J]. Journal of Luminescence, 2013, 133: 69-72. doi: 10.1016/j.jlumin.2011.08.047http://dx.doi.org/10.1016/j.jlumin.2011.08.047
DU M H. Chemical trends of Mn4+emission in solids [J]. Journal of Materials Chemistry C, 2014, 2(14): 2475-2481. doi: 10.1039/c4tc00031ehttp://dx.doi.org/10.1039/c4tc00031e
SENDEM T, VAN DIJK-MOES R J A, Meijerink A. Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors [J]. Light: Science & Applications, 2018, 7(1): 1-3. doi: 10.1038/s41377-018-0013-1http://dx.doi.org/10.1038/s41377-018-0013-1
JIANG C, BRIK M G, LI L, et al. The electronic and optical properties of a narrow-band red-emitting nanophosphor K2NaGaF6:Mn4+for warm white light-emitting diodes [J]. Journal of Materials Chemistry C, 2018, 6(12): 3016-3025. doi: 10.1039/c7tc05098dhttp://dx.doi.org/10.1039/c7tc05098d
ZHU Y, YU J, LIU Y, et al. Photoluminescence properties of a novel red fluoride K2LiGaF6:Mn4+nanophosphor [J]. RSC Advances, 2017, 7(49): 30588-30593. doi: 10.1039/c7ra05635dhttp://dx.doi.org/10.1039/c7ra05635d
SHARMA S K, LIN Y-C, CARRASCO I, et al. Weak thermal quenching of the luminescence in the Ca3Sc2Si3O12:Ce3+garnet phosphor [J]. Journal of Materials Chemistry C, 2018, 6(33): 8923-8933. doi: 10.1039/c8tc02907ehttp://dx.doi.org/10.1039/c8tc02907e
马道远. 白光LED用Mn4+激活氟氧化物红色荧光粉研究进展 [J]. 发光学报. DOI:10.37188/CJL.20230098http://dx.doi.org/10.37188/CJL.20230098
MA D Y,.Advance in Mn4+ -doped Oxyfluoride Red-emitting Phosphors for WLED. [J]. Chinese Journal of Luminescence. DOI:10.37188/CJL.20230098http://dx.doi.org/10.37188/CJL.20230098
SIJBOM H F, VERSTRAETE R, JOOS J J, et al. K2SiF6:Mn4+ as a red phosphor for displays and warm-white LEDs: a review of properties and perspectives [J]. Optical Materials Express, 2017, 7(9): 3332-3365. doi: 10.1364/ome.7.003332http://dx.doi.org/10.1364/ome.7.003332
DU J, LIU S, SONG Z, et al. All-Inorganic green synthesis of small-sized and efficient K2SiF6:Mn4+ phosphor for Mini-LED displays [J]. ACS Appl Mater Interfaces, 2023. doi: 10.1021/acsami.3c13038http://dx.doi.org/10.1021/acsami.3c13038
HUANG L, LIU Y, YU J, et al. Highly Stable K2SiF6:Mn4+@K2SiF6 Composite Phosphor with Narrow Red Emission for White LEDs [J]. ACS Applied Materials & Interfaces, 2018, 10(21): 18082-18092. doi: 10.1021/acsami.8b03893http://dx.doi.org/10.1021/acsami.8b03893
TIAN H, SETO T, WANG Y. HF-Free microwave-assisted synthesis of nano-micro-sized K2SiF6:Mn4+ for MicroLED color conversion [J]. Small Methods, 2023, 7(9).2300305. doi: 10.1002/smtd.202300305http://dx.doi.org/10.1002/smtd.202300305
KIM C-H, I-EKWON, C-HPARK, et al. Phosphors for plasma display panels [J]. Journal of Alloys and Compounds, 2000, 311(1): 33-39. doi: 10.1016/s0925-8388(00)00856-2http://dx.doi.org/10.1016/s0925-8388(00)00856-2
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构