1.无锡学院 江苏省集成电路可靠性技术及检测系统工程研究中心, 江苏 无锡 214105
[ "王伟(1984-),男,江苏泰兴人,博士研究生,高级工程师,2012年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事半导体光电子学、半导体激光器及可靠性方面的研究。E-mail: 860009@cwxu.edu.cn" ]
[ "于庆南(1990-),男,山东济宁人,博士研究生,讲师,硕士生导师,2020年于北京航空航天大学获得博士学位,主要从事InGaAs半导体结构的超宽调谐特性和双频激射特性研究。E-mail: qnyu@cwxu.edu.cn" ]
扫 描 看 全 文
王伟,杨舒婷,汪雅欣等.基于InGaAs/GaAs量子阱结构的辐射标定因子实验研究[J].发光学报,
WANG Wei,YANG Shuting,WANG Yaxin,et al.Experimental Study of Emission Scaling Factor Based on InGaAs/GaAs Quantum Well Structure[J].Chinese Journal of Luminescence,
王伟,杨舒婷,汪雅欣等.基于InGaAs/GaAs量子阱结构的辐射标定因子实验研究[J].发光学报, DOI:10.37188/CJL.20230249
WANG Wei,YANG Shuting,WANG Yaxin,et al.Experimental Study of Emission Scaling Factor Based on InGaAs/GaAs Quantum Well Structure[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230249
辐射标定因子作为半导体激光器的重要物理参数,在揭示器件性能方面一直扮演着重要角色。本文提出了一种测量辐射标定因子的实验方法,利用这一方法开展了对980nm InGaAs/GaAs量子阱结构的辐射特性研究。该方法通过收集InGaAs/GaAs边发射结构两侧辐射的光致发光(PL)光谱,利用构建的理论公式,获得了该结构在不同注入载流子浓度下的辐射标定因子,均值波动范围约为7.16×10,10 ,~ 3.36×10,11 ,W,-1,·eV,-1,·s,-1,。最后利用固体模型理论和载流子填充规律对该结果进行了分析,揭示了该结构在不同热平衡状态下的非平衡载流子能带填充水平,以及电子和空穴准费米能级的变化规律。该项研究提出了一种测量辐射标定因子的新方法,在揭示发光材料辐射机制和推动激光器发展方面具有重要研究价值。
InGaAs/GaAs semiconductor lasers have shown great application potential in many fields with their excellent optical properties. The emission scaling factor is an important physical parameter in assessing and revealing semiconductor laser performance. In this paper, a novel experimental measurement approach of emission scaling factor for 980nm InGaAs/GaAs quantum well structures is proposed and described, which is used to reveal and analyze the carried-injected band-filling effect and radiation characteristics of semiconductor lasers. In this paper, the theoretical formula between photoluminescence (PL) spectra and emission scaling factor of InGaAs/GaAs quantum well structures are established. In this method, the PL spectra emitted from the dual facets of InGaAs/GaAs edge-emitting laser structure are collected at room temperature 300K, which is pumped by 808nm fiber coupled lasers. The emission scaling factors of InGaAs/GaAs structure are obtained with the various carrier densities of 9.0×10,17,cm,-3,,9.2×10,17,cm,-3,,9.4×10,17,cm,-3,and9.6×10,17,cm,-3,.The measurement results show that the emission scaling factor has an almost uniform distribution under the same thermal equilibrium state. In addition, the factors gradually increase to 7.98×10,10, W,-1,·eV,-1,·s,-1,, 1.68×10,11, W,-1,·eV,-1,·s,-1,, 2.65×10,11, W,-1,·eV,-1,·s,-1, and 3.36×10,11, W,-1,·eV,-1,·s,-1, with the rise of carrier densities. This is because the band-filling levels of electrons and holes gradually increases as the carrier densities increase, which lead to the separation of the quasi-Fermi levels of electrons(,E,Fn,) and holes(,E,Fp,) and a move to conduction band and valence band, respectively. The Fermi level represents the boundary between quantum states that are basically occupied or empty. Therefore, the quantum state within the quasi-Fermi energy spacing is basically filled by carriers, and the quantum state larger than that is basically empty. This causes the emission scaling factor to gradually decrease at the quasi-Fermi energy spacing. The great significance of this work lies in that not only can it propose a novel experimental method for the emission scaling factor, but also reveal the energy filling levels of non-equilibrium carrier under different thermal equilibrium states. This study has important research value for revealing the radiation mechanism and promoting the development of semiconductor lasers.
InGaAs/GaAs辐射标定因子光致发光光谱能带填充水平
InGaAs/GaAsemission scaling factorphotoluminescence spectraband-filling effect
CHEN T,LIU Z Q,YANG Q C, et al. 4*10 Gbps WDM communication system based on a tunable V-cavity semiconductor laser [J]. J. Optics Express. 2023, 31(17): 28174-28184. doi: 10.1364/oe.492566http://dx.doi.org/10.1364/oe.492566
ZHOU P.ZHU J,ZHANG R H,et al. Bandwidth-enhanced LFM waveform generator based on dynamic control of an optically injected semiconductor laser [J]. J. Optics Letters. 2022, 47(15): 3864-3867. doi: 10.1364/ol.468144http://dx.doi.org/10.1364/ol.468144
黄润宇,赵伟林,曾辉,等.InP基单光子探测器的发展和应用 [J]. 激光与光电子学进展, 2021, 58(10): 1011009.
HUANG R Y,ZHAO W L,ZENG H, et al. Development and application of InP-based single photon detectors [J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011009. (in Chinese)
王立军,宁永强,秦莉,等.大功率半导体激光器研究进展[J]. 发光学报, 2015,36(01):1-19. doi: 10.3788/fgxb20153601.0001bhttp://dx.doi.org/10.3788/fgxb20153601.0001b
WANG L J,NING Y Q,QIN L, et al, Development of high power diode laser [J]. Chinese Journal of Luminescence 2015,36(01):1-19. (in Chinese). doi: 10.3788/fgxb20153601.0001bhttp://dx.doi.org/10.3788/fgxb20153601.0001b
唐恒敬,吕衍秋,张可锋,等.空间遥感用InGaAs短波红外探测器 [J]. 激光与光电子学进展, 2007, 496(05): 42-49.
TANG H J,LYU Y Q,ZHANG K F, et al. Short-wavelength infrared InGaAs photodetector for spatial remote sensing [J]. Laser & Optoelectronics Progress, 2007, 496(05): 42-49. (in Chinese)
李再金,芦鹏,李特,等.1.06μm InGaAs/InGaAsP量子阱半导体激光器的温度特性 [J]. 发光学报, 2012,33(06):647-650. doi: 10.3788/fgxb20123306.0647http://dx.doi.org/10.3788/fgxb20123306.0647
LI Z J,LU P,LI T, et al. Temperature characteristic of 1.06μm InGaAs/lnGaAsP quantum well laser diode [J]. Chinese Journal of Luminescence 2012,33(06):647-650. (in Chinese). doi: 10.3788/fgxb20123306.0647http://dx.doi.org/10.3788/fgxb20123306.0647
宁永强,刘云,王立军,等.InGaAs量子点激光器光增益的温度特性 [J].红外与毫米波学报, 2002, 21(4):4. doi: 10.3321/j.issn:1001-9014.2002.04.010http://dx.doi.org/10.3321/j.issn:1001-9014.2002.04.010
NING Y Q, LIU Y, WANG L J, et al. Temperature characteristics of light gain in InGaAs quantum dot lasers [J], Journal of Infrared and Millimeter Waves, 2002, 21(4):4. (in Chinese). doi: 10.3321/j.issn:1001-9014.2002.04.010http://dx.doi.org/10.3321/j.issn:1001-9014.2002.04.010
徐华伟,宁永强,曾玉刚,等.852nm半导体激光器InGaAlAs、InGaAsP、InGaAs和GaAs量子阱的温度稳定性 [J]. 发光学报, 2012,33(06):640-646. doi: 10.3788/fgxb20123306.0640http://dx.doi.org/10.3788/fgxb20123306.0640
XU H W,NING Y Q,ZENG Y G, et al. Temperature stability of InGaAlAs,InGaAsP,InGaAs and GaAs quantum-wells for 852nm laser diode [J]. Chinese Journal of Luminescence 2012,33(06):640-646. (in Chinese). doi: 10.3788/fgxb20123306.0640http://dx.doi.org/10.3788/fgxb20123306.0640
YU Q N,JIA Y,LU W, et al. Experimental characterization of true spontaneous emission rate of optically-pumped InGaAs/GaAs quantum-well laser structure [J]. J. Aip Advances, 2017, 7(8):085319. doi: 10.1063/1.4990630http://dx.doi.org/10.1063/1.4990630
LEWIS G M,SMOWTON P M,BLOOD P, et al. Measurement of transverse electric and transverse magnetic spontaneous emission and gain in tensile strained GaInP laser diodes [J]. J. Applied Physics Letters, 2002, 80(19):3488-3490. doi: 10.1063/1.1476396http://dx.doi.org/10.1063/1.1476396
COLDREN,LARRY A. Diode lasers and photonic integrated circuits [J]. J. Optical Engineering, 1995, 36(2):616.
SHIELDS P A,NICHOLAS R J,TAKASHINA K, et al. Observation of magnetophotoluminescence from a GaN/AlxGa1-xN heterojunction [J]. J. Phys.Rev.B, 2002, 65(65). doi: 10.1103/physrevb.65.195320http://dx.doi.org/10.1103/physrevb.65.195320
王傲,邹永刚,李明宇,等.高调谐效率V型腔可调谐半导体激光器设计与研究 [J].发光学报,2020,41(08):977-983. doi: 10.37188/fgxb20204108.0977http://dx.doi.org/10.37188/fgxb20204108.0977
WANG A,ZOU Y G,LI M Y, et al. Design and research of high tuning efficiency v-cavity tunable semiconductor laser [J]. Chinese Journal of Luminescence 2020,41(08):977-983. (in Chinese). doi: 10.37188/fgxb20204108.0977http://dx.doi.org/10.37188/fgxb20204108.0977
赵佳生,夏诒民,李乔力,等.低成本可调谐半导体激光器研究进展 [J]. 光学学报, 2022, 42(17): 1714003. doi: 10.3788/AOS202242.1714003http://dx.doi.org/10.3788/AOS202242.1714003
ZHAO J S,XIA Y M,LI Q L, et al. Research progress in low-cost tunable semiconductor lasers [J]. Acta Optica Sinica. 2022, 42(17): 1714003. (in Chinese). doi: 10.3788/AOS202242.1714003http://dx.doi.org/10.3788/AOS202242.1714003
王嘉宾.InGaAs/GaAsP超晶格在GaAs/Si异质外延中作用研究 [D]. 长春理工大学,2023. doi: 10.37188/cjl.20220375http://dx.doi.org/10.37188/cjl.20220375
WANG J B. Effect of InGaAs/GaAsP Superlattice on GaAs/Si Heteroepitaxy [D]. Changchun University of Science and Technology,2023. (in Chinese). doi: 10.37188/cjl.20220375http://dx.doi.org/10.37188/cjl.20220375
于庆南,刘子键,王新宇,等.InGaAs阱簇复合结构中铟原子自适应迁移的临界厚度研究[J/OL].光学学报,1-12[2023-10-08].
YU Q N,LIU Z J,WANG X Y, et al. Study on critical thickness of the indium atoms self-fit migration in InGaAs well-cluster composite structure [J]. Acta Optica Sinica., 1-12[2023-10-08]. (in Chinese)
马明磊,吴坚,杨沐,等.基于两端自发荧光辐射的808nm半导体激光器增益偏振特性实验表征和能带分析 [J]. 物理学报, 2013,62(17):273-278. doi: 10.7498/aps.62.174209http://dx.doi.org/10.7498/aps.62.174209
MA M L,WU J,YANG M, et al. Experimental characterization of polarization gain properties of 808 nm semiconductor laser and analysis of energy band based on amplified spontaneous emissions from double facets [J]. Acta Phys. Sinica, 2013,62(17):273-278. (in Chinese). doi: 10.7498/aps.62.174209http://dx.doi.org/10.7498/aps.62.174209
KUZENETSOV M,HAKIMI F,SPRAGUE R, et al. Design and Characteristics of High-Power ( 0.5-W Surface-Emitting Semiconductor Lasers with Circular TEM Beams [J]. J IEEE J Sel Top in Quant, 1999, 5(3):p.561-573. doi: 10.1109/2944.788419http://dx.doi.org/10.1109/2944.788419
YU H P, ROBERTS C,MURRAY R, et al. Influence of indium segregation on the emission from InGaAs/GaAs quantum wells. [J]. J. Applied Physics Letters, 1995, 66(17):2253-2253. doi: 10.1063/1.113183http://dx.doi.org/10.1063/1.113183
MA M L, WU J, NING Y Q, et al. Measurement of gain characteristics of semiconductor lasers by amplified spontaneous emissions from dual facets. [J]. J. Opt. Express, 2013, 21, 10335-10341. doi: 10.1364/oe.21.010335http://dx.doi.org/10.1364/oe.21.010335
LEWIS G M,SMOWTON P M,THOMSON J D, et al. Measurement of true spontaneous emission spectra from the facet of diode laser structures [J]. J. Applied Physics Letters, 2002, 80(1):1-3. doi: 10.1063/1.1428774http://dx.doi.org/10.1063/1.1428774
THOMSON J D,SUMMERS H D,HULYER P J, et al. Determination of single-pass optical gain and internal loss using a multisection device [J]. J. Applied Physics Letters, 1999, 75(17):2527-2529. doi: 10.1063/1.125066http://dx.doi.org/10.1063/1.125066
WESTERFELD D,SUCHALKIN S,KASPI R, et al. Absorption and single-pass gain measurements in optically pumped type-II midinfrared laser structures [J]. J. IEEE Journal of Quantum Electronics, 2004, 40(12):1657-1662. doi: 10.1109/jqe.2004.837345http://dx.doi.org/10.1109/jqe.2004.837345
JIA Y,YU Q N,LI F, et al. Experimental investigation of loss and gain characteristics of an abnormal InxGa1-xAs/GaAs quantum well structure [J]. J. Chinese Optics Letters, 2018,16(01):011402. doi: 10.3788/col201816.011402http://dx.doi.org/10.3788/col201816.011402
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构