1.中国科学院半导体研究所 光电子器件国家工程研究中心, 北京 100083
2.中国科学院大学 材料科学与光电技术学院, 北京 100049
[ "王帅坤(1998-),男,河南新乡人,硕士研究生,2021年于西安电子科技大学获得学士学位,主要从事超快光纤激光器方面的研究。E-mail: wangshuaikun@semi.ac.cn" ]
[ "仲莉(1980—),女,江苏连云港人,博士研究生,研究员,博士生导师,2008年于中国科学院半导体研究所获得博士学位,主要从事大功率半导体激光器方面的研究。E-mail: zhongli@semi.ac.cn" ]
扫 描 看 全 文
王帅坤,仲莉,林楠等.SESAM锁模全保偏皮秒脉冲光纤激光器输出特性研究[J].发光学报,
WANG Shuaikun,ZHONG Li,LIN Nan,et al.Study on the Output Characteristics of the SESAM Mode-locked All-polarization-maintaining (PM) Picosecond Fiber Laser[J].Chinese Journal of Luminescence,
王帅坤,仲莉,林楠等.SESAM锁模全保偏皮秒脉冲光纤激光器输出特性研究[J].发光学报, DOI:10.37188/CJL.20230245
WANG Shuaikun,ZHONG Li,LIN Nan,et al.Study on the Output Characteristics of the SESAM Mode-locked All-polarization-maintaining (PM) Picosecond Fiber Laser[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230245
本文搭建了基于半导体可饱和吸收镜(SESAM)锁模的全保偏皮秒脉冲光纤激光器,对比分析了以多量子阱和体材料作为可饱和吸收层的SESAM对锁模激光器输出特性的影响。实验结果表明,多量子阱和体材料SESAM均可实现稳定的自启动锁模。随着量子阱周期数的增加,SESAM调制深度增大,激光器输出脉冲宽度变窄,具有更高的输出功率和更大的锁模区间。但量子阱周期数过高的SESAM具有较大非饱和损耗,使得相同泵浦功率下输出功率降低。在相同调制深度下,体材料SESAM的非饱和损耗偏大,降低了输出功率和光光转化效率,但对脉冲的窄化作用更显著。SESAM对输出脉冲的波长和光谱宽度无显著影响,主要受光纤布拉格光栅(FBG)控制。本文对SESAM的设计与选型具有一定指导意义。
An all-polarization-maintaining picosecond fiber laser mode-locked by a semiconductor saturable absorber mirror(SESAM)is constructed. The effects of the different SESAM structure with multi-quantum well and bulk material as saturable absorber layer on the output characteristics are analyzed and compared. The experimental results show that both the multi-quantum well and the bulk material SESAM can achieve stable self-starting mode-locking. The SESAM modulation depth increases with the number of quantum well periods, resulting in narrower laser output pulse width, higher output power, and a larger mode-locking range. However, the greater the number of quantum well periods, the more nonsaturable losses of the SESAM, and it will reduce the output power at the same pump power. At the same modulation depth, bulk material SESAM has more nonsaturable losses, which will reduce the output power and optical to optical conversion efficiency, but it has a more significant effect on pulse narrowing. The wavelength and spectral width of the output pulses are not significantly affected by the SESAM, but they are primarily controlled by the fiber Bragg grating(FBG). This study provides valuable guidance for the design and the selection of the SESAM.
光纤激光器半导体可饱和吸收镜超短脉冲输出特性
fiber lasersemiconductor saturable absorber mirrorultrashort pulseoutput characteristic
WISE F W, CHONG A, RENNINGER W H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion [J]. Laser Photonics Rev., 2008, 2(1-2): 58-73. doi: 10.1002/lpor.200710041http://dx.doi.org/10.1002/lpor.200710041
KELLER U. Recent developments in compact ultrafast lasers [J]. Nature, 2003, 424(6950): 831-838. doi: 10.1038/nature01938http://dx.doi.org/10.1038/nature01938
赵继民. 超快光谱技术及其在凝聚态物理研究中的应用 [J].物理, 2011, 40(03): 184-193.
Zhao J M. Ultrafast spectroscopy and its application in condensed matter physics [J]. Physics, 2011, 40(3): 184-193. (in Chinese)
DUPRIEZ P, SAHU J, JEONG Y, et al. High-power high-brightness green laser based on a frequency doubled picosecond fiber laser [C]. Proceedings of SPIE 6453, Fiber Lasers IV: Technology, Systems, and Applications, San Jose, 2007: 64531H. doi: 10.1117/12.717529http://dx.doi.org/10.1117/12.717529
CAO C, ZHANG Z H, ZHAO X Y, et al. Review of terahertz time domain and frequency domain spectroscopy [J]. Spectrosc. Spect. Anal., 2018, 38(9): 2688-2699.
何飞,程亚. 综述飞秒激光微加工:激光精密加工领域的新前沿 [J]. 中国激光, 2007, 34(5): 595-622.
HE F, CHENG Y. Femtosecond laser micromachining: frontier in laser precision micromachining [J]. Chin. J. Lasers, 2007, 34(5): 595. (in Chinese)
KELLER U, MILLER D B, BOYD G D, et al. Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber [J]. Opt. Lett., 1992, 17(7): 505-507. doi: 10.1364/ol.17.000505http://dx.doi.org/10.1364/ol.17.000505
BROVELLI L R, KELLER U, CHIU T H. Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers [J]. J. Opt. Soc. Am., 1995, 12(2): 311-322. doi: 10.1364/josab.12.000311http://dx.doi.org/10.1364/josab.12.000311
KELLER U, KNOX W H, THOOFT G W. Ultrafast solid-state mode-locked lasers using resonant nonlinearities [J]. IEEE J. Quantum Electron, 1992, 28(10): 2123-2133. doi: 10.1109/3.159521http://dx.doi.org/10.1109/3.159521
林楠,仲莉,黎海明,等. 应变补偿多量子阱结构半导体可饱和吸收镜 [J]. 中国激光, 2022, 49(11): 1101002. doi: 10.3788/CJL202249.1101002http://dx.doi.org/10.3788/CJL202249.1101002
LIN N, ZHONG L, LI H M, et al. Strain-compensated multiquantum well structure semiconductor saturable absorber mirror [J]. Chin. J. Lasers,2022,49(11): 1101002. (in Chinese). doi: 10.3788/CJL202249.1101002http://dx.doi.org/10.3788/CJL202249.1101002
LECOURT J B, GUILLEMET S, DUPUY J, et al. High-power picosecond fiber-based laser operating at 515 nm [C]. Proceedings of SPIE 10683, Fiber Lasers and Glass Photonics: Materials through Applications, Strasbourg, 2018: 1068338. doi: 10.1117/12.2307471http://dx.doi.org/10.1117/12.2307471
KIM J W, PARK S, KIM G H, et al. A 1030 nm all-PM SESAM mode-locked dissipative soliton fiber oscillator and its amplification with Yb-doped fiber and a Yb: YAG thin rod [J]. Laser Phys., 2022, 32(10): 105102. doi: 10.1088/1555-6611/ac92dchttp://dx.doi.org/10.1088/1555-6611/ac92dc
LV Z, YANG Z, LI F, et al. SESAM mode-locked all-polarization-maintaining fiber linear cavity ytterbium laser source with spectral filter as pulse shaper [J]. Laser Phys., 2018, 28(12): 125103. doi: 10.1088/1555-6611/aae18bhttp://dx.doi.org/10.1088/1555-6611/aae18b
SU N, LI P X, LIN N, et al. Passively mode-locked Yb-doped all-fiber oscillator using self-made strain-compensated semiconductor mirrors as saturable absorbers [J]. Laser Phys., 2021, 31(2): 025102. doi: 10.1088/1555-6611/abd55bhttp://dx.doi.org/10.1088/1555-6611/abd55b
ZHANG J R, WANG J, HE X K, et al. Optimization of structural parameters of a 1.06 µm non-polarization mode-locked fiber laser [J]. J. Infrared and Millimeter Waves, 2023, 42(2): 267-275.
张志刚.飞秒激光技术(第二版)[M]. 北京:科学出版社, 2017.
ZHANG Z G. Femtosecond Laser Technology (2nd Edition) [M]. Beijing: Science Press, 2017. (in Chinese)
李平雪,杨春,赵自强,等. 1027nm大模场双包层光子晶体光纤半导体可饱和吸收镜锁模激光器 [J]. 中国激光, 2014, 41(5): 0502007. doi: 10.3788/cjl201441.0502007http://dx.doi.org/10.3788/cjl201441.0502007
LI P X, YANG C, ZHAO Z Q, et al. 1027 nm large-mode-area double-cladding photonic crystal fiber mode-locked laser based on SESAM [J]. Chin. J. Lasers, 2014, 41(5): 0502007. (in Chinese). doi: 10.3788/cjl201441.0502007http://dx.doi.org/10.3788/cjl201441.0502007
KELLER U, WEINGARTEN K J, KARTNER F X, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers [J]. IEEE J. Sel. Top. Quant., 1996, 2(3): 435-453. doi: 10.1109/2944.571743http://dx.doi.org/10.1109/2944.571743
PASCHOTTA R, KELLER U. Passive mode locking with slow saturable absorbers [J]. Appl. Phys. B-Lasers O., 2001, 73(7): 653-662. doi: 10.1007/s003400100726http://dx.doi.org/10.1007/s003400100726
孙江, 侯磊, 林启蒙, 等. 基于啁啾光纤布拉格光栅的掺镱保偏锁模光纤激光研究 [J]. 光子学报, 2018, 47(1): 119-124. doi: 10.3788/gzxb20184701.0114001http://dx.doi.org/10.3788/gzxb20184701.0114001
SUN J, HOU L, LIN Q M, et al. All-polarization maintaining mode-locked Yb-doped fiber laser with chirped fiber bragg grating [J]. ACTA PHOTONICA SINICA, 2018, 47(1):119-124. (in Chinese). doi: 10.3788/gzxb20184701.0114001http://dx.doi.org/10.3788/gzxb20184701.0114001
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构