1.中国科学院广州能源研究所, 广东 广州 510640
[ "陈晓丽(1978-),女,河北衡水,博士,高级工程师,2007年于中山大学获得博士学位,主要从事材料性能研究。E-mail: chenxl@ms.giec.ac.cn" ]
[ "朱艳青(1983-),女,山东聊城,博士研究生,助理研究员,2017年于中国科学院大学获得博士学位,主要从事量子点发光材料及其器件的研究。E-mail: zhuyq@ms. giec. ac. cn" ]
扫 描 看 全 文
陈晓丽,陈佩丽,卢思等.氢氟酸处理InP/GaP/ZnS量子点的光学性能及其发光二极管的应用[J].发光学报,
CHEN Xiao-li,CHEN Pei-li,LU Si,et al.Optical Properties of InP/GaP/ZnS Quantum Dots Processed with Hydrofluoric acid and Their Application in Light Emitting Diodes[J].Chinese Journal of Luminescence,
陈晓丽,陈佩丽,卢思等.氢氟酸处理InP/GaP/ZnS量子点的光学性能及其发光二极管的应用[J].发光学报, DOI:10.37188/CJL.20230243
CHEN Xiao-li,CHEN Pei-li,LU Si,et al.Optical Properties of InP/GaP/ZnS Quantum Dots Processed with Hydrofluoric acid and Their Application in Light Emitting Diodes[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230243
采用氢氟酸,(,HF,),原位注入法制备InP/GaP/ZnS量子点。通过紫外/可见/近红外光谱、光致发光光谱、透射电镜、球差校正透射电镜、X射线衍射、X射线光电子能谱等测试手段分析HF对InP量子点的发光性能影响。实验结果表明,HF刻蚀减少了量子点表面氧化缺陷状态,有效控制InP核表面的氧化,并且原子配体形式的F,-,钝化了量子点表面的悬挂键,显著提升了量子点的光学性能。HF处理的InP/GaP/ZnS量子点具有最佳的发光性能,PLQY高达96%。此外,用HF处理InP/GaP/ZnS量子点制备的发光二极管,其发光的电流效率为6.63 cd/A,最佳外量子效率,(,EQE,),为3.83%。
InP/GaP/ZnS quantum dots were prepared using HF in-situ injection method. The influence of HF on the luminescence performance of InP quantum dots was analyzed through testing methods such as UV-VIS-NIR absorption spectrum, Photoluminescence spectrum, transmission electron microscopy, spherical aberration corrected Transmission Electron Microscope, X-ray diffraction and X-ray photoelectron spectroscopy. The experimental results show that HF etching reduces the surface oxidation defect state of quantum dots, effectively controls the oxidation of InP core surfaces, and the atomic ligand form of F,- ,passivates the hanging bonds on the surface of quantum dots, significantly improving the optical performance of quantum dots. The HF-treated InP/GaP/ZnS quantum dots exhibit the best luminescence performance with PLQY reaching up to 96%. In addition, the light emitting diode prepared by treating InP/GaP/ZnS quantum dots with HF has a current efficiency of 6.63 cd/A and an optimal external quantum efficiency (EQE) of 3.83%.
HFInP/GaP/ZnS量子点光学性能发光二极管
HFInP/GaP/ZnS quantum dotoptical performanceLight emitting diode
WEI C, SU W, LI J, et al. A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes[J]. Adv. Mater., 2022, 34(10): e2107798. doi: 10.1002/adma.202107798http://dx.doi.org/10.1002/adma.202107798
TAO C L, MA J L, WEI C T, et al. Scalable synthesis of high-quality core/shell quantum dots with suppressed blinking[J]. Adv. Opt. Mat., 2023, 11: 2300533. doi: 10.1002/adom.202300533http://dx.doi.org/10.1002/adom.202300533
刘萍,李宇,韦闯闯,等. 界面调控对柔性量子点电致发光器件性能的影响[J].发光学报, 2023, 44(4): 641-656. doi: 10.37188/cjl.20220345http://dx.doi.org/10.37188/cjl.20220345
LIU P, LI Y, WEI C C, et al. Effects of interface regulation on performances of flexible quantum dot electroluminescent devices[J]. Chin. J. Lumin., 2023, 44(4): 641-656. doi: 10.37188/cjl.20220345http://dx.doi.org/10.37188/cjl.20220345
关小雅,王洪哲,申怀彬,等.面向显示应用的量子点发光器件研究进展[J].液晶与显示, 2021, 36(1): 176-186. doi: 10.37188/CJLCD.2020-0263http://dx.doi.org/10.37188/CJLCD.2020-0263
GUAN X Y, WANG H Z, SHEN H B, et al. Research progress of quantum dot light-emitting devices for display application[J]. Chin. J. Liq. Crys. Disp., 2021, 36(1): 176-186. doi: 10.37188/CJLCD.2020-0263http://dx.doi.org/10.37188/CJLCD.2020-0263
林永红,黄文俊,张胡梦圆,等.量子点在显示应用中的研究进展[J].液晶与显示, 2023, 38(7): 851-861. doi: 10.37188/cjlcd.2022-0265http://dx.doi.org/10.37188/cjlcd.2022-0265
LIN Y H, HUANG W J, ZHANG H M Y, et al. Research progress of quantum dots in display applications[J]. Chin. J. Liq. Crys. Disp., 2023, 38(7): 851-861. doi: 10.37188/cjlcd.2022-0265http://dx.doi.org/10.37188/cjlcd.2022-0265
吕玫,张丽,张彦,等.量子点发光二极管稳定性提高策略[J].中国光学, 2021, 14(1): 117-134. doi: 10.37188/CO.2020-0184http://dx.doi.org/10.37188/CO.2020-0184
LV M, ZHANG L, ZHANG Y, et al. Strategles for improving the stability of quantum dots light-emitting diodes[J]. Chin. Opt., 2021, 14(1): 117-134. doi: 10.37188/CO.2020-0184http://dx.doi.org/10.37188/CO.2020-0184
SHU Y F, LIN X, QIN H Y, et al. Quantum dots for display applications [J]. Angew. Chem. Int. Ed., 2020, 59: 22312-22323. doi: 10.1002/anie.202004857http://dx.doi.org/10.1002/anie.202004857
ZHANG J, ZHANG S H, ZHANG Y L, et al. Colloidal quantum dots: synthesis, composition, structure, and emerging optoelectronic applications[J]. Laser Photonics Rev., 2023,17: 2200551. doi: 10.1002/lpor.202200551http://dx.doi.org/10.1002/lpor.202200551
AGARWAL K, RAI H, MONDAL S. Quantum dots: an overview of synthesis, properties, and applications[J]. Mater. Res. Express, 2023, 10(6): 062001. doi: 10.1088/2053-1591/acda17http://dx.doi.org/10.1088/2053-1591/acda17
黄启章,孙思琦,刘铭泽,等.面向显示应用的胶体量子点电致发光二极管:进展与挑战[J].发光学报,2023,44(5): 739-758. doi: 10.37188/cjl.20220400http://dx.doi.org/10.37188/cjl.20220400
HUANG Q Z, SUN S Q, LIU M Z, et al. Colloidal quantum dot electroluminescent diodes for display applications: progress and challenges[J]. Chin. J. Lumin., 2023, 44(5): 739-758. doi: 10.37188/cjl.20220400http://dx.doi.org/10.37188/cjl.20220400
LIU G Y, ZHANG S, XU L L, et al. Recent advances of eco-friendly quantum dots light-emitting diodes for display[J]. Prog. Quant. Electron., 2022, 86: 100415. doi: 10.1016/j.pquantelec.2022.100415http://dx.doi.org/10.1016/j.pquantelec.2022.100415
陈祥, 赵浩兵, 罗芷琪, 等.基于不同ZnSe壳层厚度的InPZnSeZnS量子点光电性能[J]. 发光学报, 2022, 43(4): 501-508. doi: 10.37188/cjl.20220034http://dx.doi.org/10.37188/cjl.20220034
CHEN X, ZHAO H B, LUO Z Q, et al. Optoelectronic properties of InP/ZnSe/ZnS quantum dots with different ZnSe shell layer thicknesses[J]. Chin. J. Lumin., 2022, 43(4): 501-508. doi: 10.37188/cjl.20220034http://dx.doi.org/10.37188/cjl.20220034
SHEN C, ZHU Y Q, Li Z X, et al. Highly luminescent InP–In(Zn)P/ZnSe/ZnS core/shell/shell colloidal quantum dots with tunable emissions synthesized based on growth-doping[J]. J. Mater. Chem. C, 2021, 9(30): 9599-9609. doi: 10.1039/d1tc01664dhttp://dx.doi.org/10.1039/d1tc01664d
JALALI H B, SADEGHI S, YUKSEL I B D, et al. Past, present and future of indium phosphide quantum dots[J]. Nano Res., 2022, 15(5): 4468-4489. doi: 10.1007/s12274-021-4038-zhttp://dx.doi.org/10.1007/s12274-021-4038-z
TAO H, ZOU J H, XU X Q, et al. Blue-emitting InP/GaP/ZnS quantum dots with enhanced stability by siloxane capping: implication for electroluminescent devices[J]. ACS Appl. Nano Mater., 2022, 5(2): 2801-2811. doi: 10.1021/acsanm.1c04486http://dx.doi.org/10.1021/acsanm.1c04486
DUAN X J, MA J, ZHANG W D, et al. Study of the interfacial oxidation of inP quantum dots synthesized from tris(dimethylamino)phosphine[J]. ACS Appl. Mater. Interfaces, 2023, 15(1): 1619-1628. doi: 10.1021/acsami.2c20138http://dx.doi.org/10.1021/acsami.2c20138
TESSIER M D, BAQUERO E A, DUPONT D, et al. Interfacial oxidation and photoluminescence of InP-based core/shell quantum dots[J]. Chem. Mater., 2018, 30(19): 6877-6883. doi: 10.1021/acs.chemmater.8b03117http://dx.doi.org/10.1021/acs.chemmater.8b03117
STEIN J L, HOLDEN W M, VENKATESH A, et al. Probing surface defects of InP quantum dots using phosphorus Kα and Kβ X-ray emission spectroscopy[J]. Chem. Mater., 2018, 30(18): 6377-6388. doi: 10.1021/acs.chemmater.8b02590http://dx.doi.org/10.1021/acs.chemmater.8b02590
CHAO W C, CHIANG T H, LIU Y C, et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility[J]. Commun. Mater., 2021, 2: 96. doi: 10.1038/s43246-021-00203-5http://dx.doi.org/10.1038/s43246-021-00203-5
KIM Y W, HAM S J, JANG HYOSOOK, et al. Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays[J]. ACS Appl. Nano Mater., 2019, 2(3): 1496-1504. doi: 10.1021/acsanm.8b02063http://dx.doi.org/10.1021/acsanm.8b02063
YANG W X, YANG Y W, KALEDIN AL, et al. Surface passivation extends single and biexciton lifetimes of InP quantum dots[J]. Chem. Sci., 2020, 11(22): 5779-5789. doi: 10.1039/d0sc01039ahttp://dx.doi.org/10.1039/d0sc01039a
CHIKAN V, MCLAURIN E J. Rapid nanoparticle synthesis by magnetic and microwave heating[J]. Nanomater., 2016, 6: 85. doi: 10.3390/nano6050085http://dx.doi.org/10.3390/nano6050085
KIM T G, ZHEREBETSKYY D, BEKENSTEIN Y, et al. Trap passivation in indium-based quantum dots through surface fluorination: mechanism and applications[J]. ACS Nano, 2018, 12(11): 11529-11540. doi: 10.1021/acsnano.8b06692http://dx.doi.org/10.1021/acsnano.8b06692
SIRAMDAS R, MCLAURIN E J. InP nanocrystals with color-tunable luminescence by microwave-assisted ionic-liquid etching[J]. Chem. Mater., 2017, 29(5): 2101-2109. doi: 10.1021/acs.chemmater.6b04457http://dx.doi.org/10.1021/acs.chemmater.6b04457
MICIC O I, SPRAGUE J, LU Z, et al. Highly efficient band-edge emission from InP quantum dots[J]. Appl. Phys. Lett., 1996, 68(22): 3150-3152. doi: 10.1063/1.115807http://dx.doi.org/10.1063/1.115807
WON Y H, CHO O, KIM T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes[J]. Nature, 2019, 575(7784): 634-638. doi: 10.1038/s41586-019-1771-5http://dx.doi.org/10.1038/s41586-019-1771-5
CAO F, WANG S, WANG F, et al. A layer-by-layer growth strategy for large-size InP/ZnSe/ZnS core–shell quantum dots enabling high-efficiency light-emitting diodes[J]. Chem. Mater., 2018, 30(21): 8002-8007. doi: 10.1021/acs.chemmater.8b03671http://dx.doi.org/10.1021/acs.chemmater.8b03671
ZHANG H, HU N, ZENG Z, et al. High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots[J]. Adv. Opt. Mater., 2019, 7(7): 1801602. doi: 10.1002/adom.201801602http://dx.doi.org/10.1002/adom.201801602
ZHANG H, MA X, LIN Q, et al. High-brightness blue InP quantum dot-based electroluminescent devices: the role of shell thickness[J]. J. Phys. Chem. Lett., 2020, 11(3): 960-967. doi: 10.1021/acs.jpclett.9b03567http://dx.doi.org/10.1021/acs.jpclett.9b03567
KIM S, KIM T, KANG M, et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes[J]. J. Am. Chem. Soc., 2012, 134(8): 3804-3809. doi: 10.1021/ja210211zhttp://dx.doi.org/10.1021/ja210211z
LEE W, LEE C, KIM B, et al. Synthesis of blue-emissive InP/GaP/ZnS quantum dots via controlling the reaction kinetics of shell growth and length of capping ligands[J]. Nanomater., 2020, 10(11): 2171. doi: 10.3390/nano10112171http://dx.doi.org/10.3390/nano10112171
REISS P, CARRIERE M, LINCHENEAU C, et al. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials[J]. Chem. Rev., 2016, 116(18): 10731-10819. doi: 10.1021/acs.chemrev.6b00116http://dx.doi.org/10.1021/acs.chemrev.6b00116
SHEN W, TANG H Y, YANG X L, et al. Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes[J]. J. Mater. Chem. C, 2017, 5(32): 8243-8249. doi: 10.1039/c7tc02927fhttp://dx.doi.org/10.1039/c7tc02927f
SINGH A, SHARMA C, KUMAR M, et al. Enhanced luminescence efficiency of wet chemical route synthesized InP-based quantum dots by a novel method: Probing the humidity sensing properties[J]. J. Lumin., 2018, 198: 108-116. doi: 10.1016/j.jlumin.2018.02.001http://dx.doi.org/10.1016/j.jlumin.2018.02.001
PU Y C, FAN H C, CHANG J C, et al. Effects of interfacial oxidative layer removal on charge carrier recombination dynamics in InP/ZnSe(x)S(1-x) core/shell quantum dots[J]. J. Phys. Chem. Lett., 2021, 12(30): 7194-7200. doi: 10.1021/acs.jpclett.1c02125http://dx.doi.org/10.1021/acs.jpclett.1c02125
LIU P, LOU Y J, DING S H, et al. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications[J]. Adv. Funct. Mater., 2021, 31: 2008453. doi: 10.1002/adfm.202008453http://dx.doi.org/10.1002/adfm.202008453
RAMASAMY P, KIM B, LEE M S, et al. Beneficial effects of water in the colloidal synthesis of InP/ZnS core-shell quantum dots for optoelectronic applications[J]. Nanoscale, 2016, 8(39): 17159-17168. doi: 10.1039/c6nr04713khttp://dx.doi.org/10.1039/c6nr04713k
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构