1.太原科技大学 应用科学学院, 山西 太原 030024
[ "张力夫(1999-),男,山西万荣人,硕士研究生,2020年于太原理工大学获得学士学位,主要从事全无机金属卤化物钙钛矿量子点发光方面的研究。E-mail: S202118111076@stu.tyust.edu.cn" ]
[ "张瑞(1985-),女,山西壶关人,博士,教授,硕士研究生导师,2014年于武汉大学获得博士学位,主要从事石墨烯等二维材料、离子束材料改性及钙钛矿量子点发光方面的研究。E-mail: zrzx_0921@tyust.edu.cn" ]
扫 描 看 全 文
张力夫,陈刚,闫奥等.双壳层包覆Mn:CsPbCl3纳米晶的制备及潜指纹识别应用研究[J].发光学报,
ZHANG Lifu,CHEN Gang,YAN Ao,et al.Synthesis of Double-Layer Coated Mn:CsPbCl3 Nanocrystals and Their Application of Latent Fingerprint Identification[J].Chinese Journal of Luminescence,
张力夫,陈刚,闫奥等.双壳层包覆Mn:CsPbCl3纳米晶的制备及潜指纹识别应用研究[J].发光学报, DOI:10.37188/CJL.20230226
ZHANG Lifu,CHEN Gang,YAN Ao,et al.Synthesis of Double-Layer Coated Mn:CsPbCl3 Nanocrystals and Their Application of Latent Fingerprint Identification[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230226
全无机卤化铅铯钙钛矿纳米晶CsPbX,3,(X=Cl,Br,I)因其具有独特的光电特性,近年来在固体照明及显示、太阳能电池、阻变存储器等领域成为了研究的热门之选。Mn,2+,是一种比Pb,2+,半径小的过渡金属离子,利用Mn,2+,掺杂CsPbCl,3,钙钛矿纳米晶能够实现波长位于600 nm左右可见光区域的橘黄色发射,且能够部分替代钙钛矿纳米晶中的Pb,2+,,降低钙钛矿纳米晶的毒性。然而,Mn,2+,掺杂的卤化物钙钛矿纳米晶仍易受环境中水分子等的侵蚀而导致其荧光特性严重退化,在此,采用了一种利用四甲氧基硅烷(Tetramethoxysilane, TMOS)和聚甲基丙烯酸甲酯(Polymethyl methacrylate, PMMA)对Mn,2+,掺杂CsPbCl,3,钙钛矿纳米晶进行双壳层的包覆方法,并分析了双壳层包覆法对钙钛矿纳米晶稳定性提升的机理。此外,还对比了双壳层包覆的Mn,2+,掺杂CsPbCl,3,钙钛矿纳米晶在甲苯和二氯甲烷(Dichloromethane, DCM)溶剂下的发光特性,它们呈现的橘黄色荧光发射强度并未明显下降,且荧光量子产率(Photoluminescence Quantum Yield, PLQY)能够保持在25%左右。并以此为基础制备了相应荧光纳米晶粉末,将其运用于潜指纹辨识上,可长期有效地检测潜指纹信息。
All inorganic lead cesium halide perovskite nanocrystal CsPbX,3, (X = Cl, Br, I) has become attractive candidate in solid state lighting and display, solar cells, resistive memory and other fields due to its unique photoelectric characteristics. Mn,2+,-doped CsPbCl,3, perovskite nanocrystals could achieve orange emission at the wavelength of around 600 nm, where Mn,2+, with a small radius can partially replace Pb,2+, to reduce toxicity. However, Mn,2+,-doped halide perovskite nanocrystals are still susceptible to the erosion of water molecules in the environment, leading to the severe degradation of their fluorescence properties. Herein, a double-layer coating method was adopted for Mn,2+, -doped CsPbCl,3, using TMOS and PMMA, and the mechanism of improving the stability of perovskite nanocrystals by the double-layer coating method was also analyzed. Furthermore, the luminescence properties of double-layer coated Mn,2+, ion doped CsPbCl,3, perovskite nanocrystals in toluene and dichloromethane solvents were compared. The orange Mn,2+, emission intensity has not significantly reduced, and the PLQY can be maintained at about 25%. Based on this, the corresponding luminescence nanocrystal powder was prepared and applied to latent fingerprint identification, which can effectively detect the latent fingerprint information for a long time.
Mn2+掺杂卤化物钙钛矿纳米晶双壳层包覆荧光粉末潜指纹辨识
Mn2+-dopedhalide perovskite nanocrystalsdouble-layer coatingluminescence powderlatent fingerprints identification
宋宏伟, 周东磊, 白雪, 等. 稀土掺杂铅卤钙钛矿发光、光电材料与器件研究进展[J]. 发光学报,2023,44(3):387-412. doi: 10.37188/CJL.20220391http://dx.doi.org/10.37188/CJL.20220391
SONG H W, ZHOU D L, BAI X, et al. Advances in rare earth doped lead halide perovskite luminescence, optoelectronic materials and devices[J]. CHIN J LUMIN, 2023,44(3):387-412. doi: 10.37188/CJL.20220391http://dx.doi.org/10.37188/CJL.20220391
SUN R, ZHOU D, DING Y, et al. Efficient single-component white light emitting diodes enabled by lanthanide ions doped lead halide perovskites via controlling forster energy transfer and specific defect clearance[J]. Light Sci Appl., 2022,11(340). doi: 10.1038/s41377-022-01027-9http://dx.doi.org/10.1038/s41377-022-01027-9
TANG X S, YANG J, LI S Q, et al. Single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties[J]. Adv. Sci., 2019, 6(18): 1900412. doi: 10.1002/advs.201970107http://dx.doi.org/10.1002/advs.201970107
ZHONG Q X, CAO M H, HU H C, et al. One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles[J]. ACS Nano, 2018, 12(8): 8579-8587. doi: 10.1021/acsnano.8b04209http://dx.doi.org/10.1021/acsnano.8b04209
ZHANG C X, CHEN J Y, KONG L M, et al. Core/shell metal halide perovskite nanocrystals for optoelectronic applications[J]. Adv. Funct. Mater., 2021, 31(19): 2100438. doi: 10.1002/adfm.202100438http://dx.doi.org/10.1002/adfm.202100438
KUMAR P, PATEL M, PARK C, et al. Highly luminescent biocompatible CsPbBr3@SiO2 core–shell nanoprobes for bioimaging and drug delivery[J]. J. Mater. Chem. B, 2020, 8(45): 10337-10345. doi: 10.1039/d0tb01833chttp://dx.doi.org/10.1039/d0tb01833c
WANG P C, DONG B H, CUI Z J, et al. Synthesis and characterization of Mn-doped CsPb(Cl/Br)3 perovskite nanocrystals with controllable dual-color emission[J]. RSC Adv., 2018, 8(4): 1940-1947. doi: 10.1039/C7RA13306Ehttp://dx.doi.org/10.1039/C7RA13306E
WANG C L, WU H, XU S H, et al. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes[J]. Nanoscale, 2017, 9(43): 16858-16863. doi: 10.1039/C7NR06538Hhttp://dx.doi.org/10.1039/C7NR06538H
LI F, XIA Z G, PAN C F, et al. High Br- content CsPb(ClyBr1-y)3 perovskite nanocrystals with strong Mn2+ emission through diverse cation/anion exchange engineering[J]. ACS Appl. Mater. Interfaces, 2018, 10(14): 11739-11746. doi: 10.1021/acsami.7b18750http://dx.doi.org/10.1021/acsami.7b18750
ZHU J R, YANG X L, ZHU Y H, et al. Room temperature synthesis of Mn-doped cesium lead halide quantum dots with high Mn substitution ratio[J]. J. Phys. Chem. Lett., 2017, 8(17): 4167-4171. doi: 10.1021/acs.jpclett.7b01820http://dx.doi.org/10.1021/acs.jpclett.7b01820
TANG X S, CHEN W W, LIU Z Z, et al. Ultrathin, core–shell structured SiO2 coated Mn2+‐doped perovskite quantum dots for bright white light‐emitting diodes[J]. Small, 2019, 15(19): 1900484. doi: 10.1002/smll.201970101http://dx.doi.org/10.1002/smll.201970101
ROSSI D, PAROBEK D, DONG Y T, et al. Dynamics of exciton–Mn energy transfer in Mn-doped CsPbCl3 perovskite nanocrystals[J]. J. Phys. Chem. C, 2017, 121(32): 17143-17149. doi: 10.1021/acs.jpcc.7b06182http://dx.doi.org/10.1021/acs.jpcc.7b06182
LIU M N, MATUHINA A, ZHANG H C, et al. Advances in the stability of halide perovskite nanocrystals[J]. MATERIALS, 2019, 12(22): 3733. doi: 10.3390/ma12223733http://dx.doi.org/10.3390/ma12223733
CHEN D Q, ZHOU S, TIAN F F, et al. Halogen-hot-injection synthesis of Mn-doped CsPb(Cl/Br)3 nanocrystals with blue/orange dual-color luminescence and high photoluminescence quantum yield[J]. Adv. Opt. Mater., 2019, 7(23): 1901082. doi: 10.1002/adom.201901082http://dx.doi.org/10.1002/adom.201901082
WANG S X, BI C H, YUAN J F, et al. Original core-shell structure of cubic CsPbBr3@amorphous CsPbBrx perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%[J]. ACS Energy Lett., 2017: 245-251. doi: 10.1021/acsenergylett.7b01243http://dx.doi.org/10.1021/acsenergylett.7b01243
ZHANG R, YUAN Y X, ZHANG J F, et al. Improving the Mn2+ emission and stability of CsPb(Cl/Br)3 nanocrystals by Ni2+ doping in ambient air[J]. J. Mater. Sci., 2021, 56(12): 7494-7507. doi: 10.1007/s10853-021-05779-4http://dx.doi.org/10.1007/s10853-021-05779-4
ADHIKARI SDAS, BEHERA R K, BERA S, et al. Presence of metal chloride for minimizing the halide deficiency and maximizing the doping efficiency in Mn(II)-doped CsPbCl3 nanocrystals[J]. J. Phys. Chem. Lett., 2019: 1530-1536. doi: 10.1021/acs.jpclett.9b00599http://dx.doi.org/10.1021/acs.jpclett.9b00599
XING K, YUAN X, WANG Y, et al. Improved doping and emission efficiencies of Mn-doped CsPbCl3 perovskite nanocrystals via nickel chloride[J]. J. Phys. Chem. Lett., 2019, 10(15): 4177-4184. doi: 10.1021/acs.jpclett.9b01588http://dx.doi.org/10.1021/acs.jpclett.9b01588
LI X W, CAI W S, GUAN H L, et al. Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication[J]. Chem. Eng. J., 2021, 419: 129551. doi: 10.1016/j.cej.2021.129551http://dx.doi.org/10.1016/j.cej.2021.129551
ZHANG Y Q, LIU X Y, F Y, et al. One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields[J]. Nanoscale, 2016, 8(33): 15281-15287. doi: 10.1039/c6nr03125khttp://dx.doi.org/10.1039/c6nr03125k
CHEN D Q, FANG G L, CHEN X, Silica-coated Mn-doped CsPb(Cl/Br)3 inorganic perovskite quantum dots: exciton-to-Mn energy transfer and blue-excitable solid-state lighting[J]. ACS Appl. Mater. Interfaces, 2017, 9(46): 40477-40487. doi: 10.1021/acsami.7b14471http://dx.doi.org/10.1021/acsami.7b14471
CHEN W W, SHI T C, DU J, et al. Highly stable silica-wrapped Mn-doped CsPbCl3 quantum dots for bright white light emitting devices[J]. ACS Appl. Mater. Interfaces, 2018, 10(50): 43978-43986. doi: 10.1021/acsami.8b14046http://dx.doi.org/10.1021/acsami.8b14046
ZHANG R, CHEN G, LIU H Y, et al. Synergetic effects of the co-doping transition metal ions and the silica-shell coating for enhancing the photoluminescence and stability of Mn:CsPbCl3 nanocrystals and their application[J]. Opt. Mater., 2023, 135: 113308. doi: 10.1016/j.optmat.2022.113308http://dx.doi.org/10.1016/j.optmat.2022.113308
SUN R, ZHOU D L, WANG Y, et al. Highly efficient ligand-modified manganese ion doped CsPbCl3 perovskite quantum dots for photon energy conversion in silicon solar cells[J]. Nanoscale, 12(36): 18621-18628. doi: 10.1039/d0nr04885bhttp://dx.doi.org/10.1039/d0nr04885b
MENG C F, YANG D D, WU Y, et al. Synthesis of single CsPbBr3@SiO2 core–shell particles via surface activation[J]. J. Mater. Chem. C, 2020, 8(48): 17403-17409. doi: 10.1039/d0tc03932bhttp://dx.doi.org/10.1039/d0tc03932b
XIE L L, HONG Z Z, ZAN J, et al. Broadband detection of X-ray, ultraviolet, and near-infrared photons using solution-processed perovskite-lanthanide nanotransducers[J]. Adv. Mater., 2021, 33(25): 2101852. doi: 10.1002/adma.202101852http://dx.doi.org/10.1002/adma.202101852
SUN C, SHEN X Y, ZHANG Y, et al. Highly luminescent, stable, transparent and flexible perovskite quantum dot gels towards light-emitting diodes[J]. Nanotechnology, 2017, 28(36): 365601. doi: 10.1088/1361-6528/aa7c86http://dx.doi.org/10.1088/1361-6528/aa7c86
JANG J, KIM Y H, PARK S, et al. Extremely stable luminescent crosslinked perovskite nanoparticles under harsh environments over 1.5 years[J]. Adv. Mater., 2021, 33(3): 2005255. doi: 10.1002/adma.202170017http://dx.doi.org/10.1002/adma.202170017
YONG Z J, GUO S Q, MA J P, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield[J]. J. Am. Chem. Soc., 2018, 140(31): 9942-9951. doi: 10.1021/jacs.8b04763http://dx.doi.org/10.1021/jacs.8b04763
LIU W Y, LIN Q L, LI H B, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. J. Am. Chem. Soc., 2016, 138(45): 14954-14961. doi: 10.1021/jacs.6b08085http://dx.doi.org/10.1021/jacs.6b08085
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构