1.聊城大学 物理科学与信息工程学院, 山东 聊城 252059
2.中国科学院长春光学精密机械与物理研究所,发光学及应用国家重点实验室, 吉林 长春 130033
3.福州大学 机械工程与自动化学院, 福建 福州 350108
[ "初光辉(1988-),男,山东潍坊人,硕士研究生,2021年于济南大学取得学士学位,主要从事高速雪崩光电探测器的研究。E-mail:178656762@qq.com" ]
[ "李晋平(1989-),男,山西朔州人,博士,副研究员,博士生导师,2017年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事高速光电探测器等研究。E-mail:lijinping@ciomp.ac.cn" ]
扫 描 看 全 文
初光辉,杨国皓,刘天宏等.用于雪崩光电探测器响应度增强的超透镜设计与仿真[J].发光学报,
CHU Guanghui,YANG Guohao,LIU Tianhong,et al.Design and Simulation of Metalens for Enhanced Responsivity of Avalanche Photodetectors[J].Chinese Journal of Luminescence,
初光辉,杨国皓,刘天宏等.用于雪崩光电探测器响应度增强的超透镜设计与仿真[J].发光学报, DOI:10.37188/CJL.20230221
CHU Guanghui,YANG Guohao,LIU Tianhong,et al.Design and Simulation of Metalens for Enhanced Responsivity of Avalanche Photodetectors[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230221
超透镜除了可以实现传统透镜的聚焦和成像功能之外,还可通过对超构单元的设计实现对光场偏振、波长和振幅等的多维度操控,由于体积薄、重量轻、成本低、易集成,其在光电子器件领域中开始崭露头角,已经成为当前的研究热点和重要方向。本文采用时域有限差分算法(Finite-Difference Time-Domain,FDTD)设计并优化了基于InGaAs雪崩探测器原位集成的超透镜,同时估算了超透镜的聚焦效率和透射率。仿真结果表明,超透镜将入射光会聚至探测器的光敏区中,透射率达到82.8%,并且在目标焦距150 μm,超透镜半径50 μm时聚焦效率达到 84.89%。为进一步提高透射率,在超透镜表面增加抗反射层(AR Layer),结果表明:300 nm的SiO,2,层透射率达到最大值86.6%,250 nm的SiN层透射率达到最大值87.6%。透射率比未增加AR层时分别增加了3.8%和4.8%。最后计算得出集成超透镜的探测器的吸收区光场能量比未集成超透镜的探测器吸收区光场能量提升了250.96倍,将极大提升探测器的响应度。本文提出了单片集成超透镜的雪崩探测器设计方案,将雪崩探测器光敏区之外的入射光会聚至光敏区,在不损失带宽前提下提升探测器的量子效率,为高响应度、带宽雪崩探测器的设计提供了新思路。
In addition to the focusing and imaging functions, Metalens can also manipulate light field polarization, wavelength, and amplitude through kinds of meta-units. Due to the small size, light weight, low cost and easy integration, Metalens has become a research hotspot and important trend in optoelectronic integration area. In this paper, finite-difference time-domain (FDTD) algorithm is used to design and optimize Metalens based on in-situ integration of InGaAs avalanche detectors, and the focusing efficiency and transmittance of the Metalens are calculated. The simulation results show that the Metalens converges incident light into the absorption layer of detector, the transmittance reaches 82.8%, and the focusing efficiency reaches 84.89% when the target focal length is 150 μm and the Metalens radius is 50 μm. To further increase the transmittance, an AR anti-reflection layer is added. The results show that the maximum transmittance is 86.6% and 87.6% for 300 nm SiO,2 ,and 250 nm SiN. Compared with the Metalens without AR layer, the max transmittance increased by 3.8% and 4.8%, respectively. Finally, it is estimated that the energy of the light field in the absorption region integrated with Metalens is 250.96 times higher than that of the detector without Metalens, which can greatly improve the responsivity of detector. This paper proposes a monolithic integrated method for avalanche detector with Metalens, which can concentrate the energy outside the detection area into absorption area, improves the quantum efficiency of detector without bandwidth reduction. This will provide a new sight for high responsivity and high bandwidth detectors.
超透镜探测器聚焦效率量子效率
Metalensdetectorfocusing efficiencyquantum efficiency
WANG H, YANG X, WANG R, et al. Low dark current and high gain-bandwidth product of avalanche photodiodes: optimization and realization[J]. Optics express, 2020, 28(11):16211-16229. doi: 10.1364/oe.393063http://dx.doi.org/10.1364/oe.393063
NADA M, YAMADA Y, MATSUZAKI H. Responsivity-Bandwidth Limit of Avalanche Photodiodes: Toward Future Ethernet Systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, PP(99):1-1. doi: 10.1109/jstqe.2017.2754361http://dx.doi.org/10.1109/jstqe.2017.2754361
JONES A H, MARCH S D, DADEY A A, et al. AlInAsSb Separate Absorption, Charge, and Multiplication Avalanche Photodiodes for Mid-Infrared Detection[J]. IEEE Journal of Quantum Electronics: A Publication of the IEEE Quantum Electronics and Applications Society, 2022(4):58. doi: 10.1109/jqe.2022.3149532http://dx.doi.org/10.1109/jqe.2022.3149532
唐剑雄, 龚岩栋, 庞恺. 二维超构表面:超透镜应用及研究进展[J]. 激光与光电子学进展, 2023, 60(21).
TANG J X, GONG Y D, PANG K. Two-Dimensional Metasurfaces: Applications and Research Progress in metalenses[J]. Laser & Optoelectronics Progress, 2023, 60(21). (in Chinese)
ZHANG S, SOIBEL A, KEO S A, et al. Solid-immersion metalenses for infrared focal plane arrays[J]. Applied Physics Letters, 2018, 113(11):111104.1-111104.5. doi: 10.1063/1.5040395http://dx.doi.org/10.1063/1.5040395
LI F, DENG J, ZHOU J, et al. HgCdTe mid-Infrared photo response enhanced by monolithically integrated meta-lenses[J]. Scientific Reports, 2020, 10(1): 6372. doi: 10.1038/s41598-020-62433-whttp://dx.doi.org/10.1038/s41598-020-62433-w
ZHANG H, ZHAO Y, LI Q, et al. Metalens array for InGaAs/InP avalanche photodiodes at optical-communication wavelengths[J]. Optics Communications, 2022, 514: 128159. doi: 10.1016/j.optcom.2022.128159http://dx.doi.org/10.1016/j.optcom.2022.128159
程强. 红外超透镜设计与性能研究[D]. 西安电子科技大学. doi: 10.2139/ssrn.1863683http://dx.doi.org/10.2139/ssrn.1863683
CHENG Q. Research on the Design and Performance of Infrared metalenses[D]. Xi'an University of Electronic Science and Technology.(in Chinese). doi: 10.2139/ssrn.1863683http://dx.doi.org/10.2139/ssrn.1863683
SHRESTHA S, OVERVIG A C, LU M, et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 2018, 7(1). doi: 10.1038/s41377-018-0078-xhttp://dx.doi.org/10.1038/s41377-018-0078-x
JIANG L, CHEN C, WANG Y, et al. High-Efficiency All-dielectric Metalenses for Multi-Focus with Arbitrary Polarization[J]. Results in Physics, 2021, 23(11):103981. doi: 10.1016/j.rinp.2021.103981http://dx.doi.org/10.1016/j.rinp.2021.103981
KAMALI S M, ARBABI E, Arbabi A, et al. A review of dielectric optical metasurfaces for wavefront control[J]. Nanophotonics, 2018. doi: 10.1515/nanoph-2017-0129http://dx.doi.org/10.1515/nanoph-2017-0129
HOU H, ZHANG Y, LUO Z, et al. Design and fabrication of monolithically integrated metalens for higher effective fill factor in long-wave infrared detectors[J]. Optics and Lasers in Engineering, 2022, 150:106849-. doi: 10.1016/j.optlaseng.2021.106849http://dx.doi.org/10.1016/j.optlaseng.2021.106849
LUKEK., OKAWACHIY., LAMONTM. R. E., GAETAA. L., LIPSONM.. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator, Opt. Lett. 40, 4823-4826 (2015).
王杰, 黎相孟, 吉卓琪,等. 面向近红外成像超透镜的设计与仿真[J]. 激光与红外, 2023, 53(1):6. doi: 10.3969/j.issn.1001-5078.2023.01.018http://dx.doi.org/10.3969/j.issn.1001-5078.2023.01.018
WANG J, LI X M, JI Z Q, et al. Design and Simulation of Near-Infrared Imaging Metalens[J]. Laser Infrared, 2023, 53(1):6. (in Chinese). doi: 10.3969/j.issn.1001-5078.2023.01.018http://dx.doi.org/10.3969/j.issn.1001-5078.2023.01.018
KHORASANINEJAD M, ZHU A Y, ROQUES-CARMES C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano letters, 2016, 16(11): 7229-7234. doi: 10.1021/acs.nanolett.6b03626http://dx.doi.org/10.1021/acs.nanolett.6b03626
HUI Y, GUANHAI L, GUANGTAO C, et al. Polarization-independent metalens constructed of antennas without rotational invariance[J]. Optics Letters, 2017, 42(19):3996-3999. doi: 10.1364/ol.42.003996http://dx.doi.org/10.1364/ol.42.003996
GONG X, TONG M, XIA Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667. doi: 10.1126/science.1176706http://dx.doi.org/10.1126/science.1176706
ZHAO Y, TU J, LI Q, et al. Monolithic Integrated InGaAs/InAlAs WDM-APDs With Partially Depleted Absorption Region and Evanescently Coupled Waveguide Structure[J]. Journal of Lightwave Technology, 2020, PP(99):1-1. doi: 10.1109/jlt.2020.2987156http://dx.doi.org/10.1109/jlt.2020.2987156
CHEN W T, ZHU A Y, KHORASANINEJAD M, et al. Immersion Meta-lenses at Visible Wavelengths for Nanoscale Imaging[J]. Nano Letters, 2017:3188. doi: 10.1021/acs.nanolett.7b00717http://dx.doi.org/10.1021/acs.nanolett.7b00717
MENG Y, LYU Y, YU Z, et al. Visible-light metalens far-field nanofocusing effects with active tuning of focus based on MIM subwavelength structures used in an integrated imaging array[J]. Applied optics, 2022(5):61. doi: 10.1364/ao.444729http://dx.doi.org/10.1364/ao.444729
KIM J W, KIM Y J. Design of a polarization insensitive achromatic metalens with a high NA and uniform focusing efficiency based on a double layer structure of silicon and germanium[J]. Journal of the Optical Society of America B Optical Physics, 2022, 39. doi: 10.1364/josab.451850http://dx.doi.org/10.1364/josab.451850
LI Z, CHEN Z, OULTON R F, et al. Solid immersion metalens for directional single molecule emission with high collection efficiency[J]. arXiv e-prints, 2022.
NADA M, YOSHIMATSU T, NAKAJIMA F, et al. A 42-GHz Bandwidth Avalanche Photodiodes Based on III-V Compounds for 106-Gbit/s PAM4 Applications[J]. Journal of Lightwave Technology, 2019, 37(2):260-265. doi: 10.1109/jlt.2018.2871508http://dx.doi.org/10.1109/jlt.2018.2871508
LI Y, YUAN W, LI K, et al. InGaAs/InAlAs SAGCMCT avalanche photodiode with high linearity and wide dynamic range[J]. Chinese Optics Letters, 2022, 20(2):022503. doi: 10.3788/col202220.022503http://dx.doi.org/10.3788/col202220.022503
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构