1.兰州理工大学 材料科学与工程学院, 甘肃 兰州 730050
2.兰州理工大学 有色金属先进加工与回收国家重点实验室, 甘肃 兰州 730050
3.甘肃稀土新材料股份有限公司, 甘肃 白银 730922
[ "何玲(1976—),女,甘肃天水人,博士研究生,教授,2007年在兰州大学获得博士学位,主要从事光电功能材料及稀土回收再利用的相关研究。E-mail: hlswm@163.com" ]
扫 描 看 全 文
何玲,温顺,孙卫民等.Sr2MgSi2O7:Eu2+,Eu3+发光性能研究及颜色调控[J].发光学报,
HE Ling,WEN Shun,SUN Weimin,et al.Study on the Luminescence Performance and Color Control of Sr2MgSi2O7:Eu2+,Eu3+[J].Chinese Journal of Luminescence,
何玲,温顺,孙卫民等.Sr2MgSi2O7:Eu2+,Eu3+发光性能研究及颜色调控[J].发光学报, DOI:10.37188/CJL.20230214
HE Ling,WEN Shun,SUN Weimin,et al.Study on the Luminescence Performance and Color Control of Sr2MgSi2O7:Eu2+,Eu3+[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230214
采用静电纺丝法在不同气氛下制备了Sr,2,MgSi,2,O,7,∶Eu,2+,,Eu,3+,纤维,研究其晶体结构、形貌;将纤维与聚二甲基硅氧烷(PDMS)复合后获得Sr,2,MgSi,2,O,7,∶Eu,2+,,Eu,3+,-PDMS复合材料,研究其光致发光和应力发光性能。研究结果显示,在氮气、空气下XPS图谱同时出现Eu,2+,和Eu,3+,结合能特征峰;在360 nm和395 nm激发下复合材料的光致发光光谱中,不但有Eu,2+,位于469 nm处的蓝色宽带发射,还包含Eu,3+,位于615 nm的多个红色窄带发射。因为Eu,3+,在电荷补偿下还原成Eu,2+,并在刚性结构保护下不被氧化,证实Eu,3+,在Sr,2,MgSi,2,O,7,中的自还原现象。随着Eu,3+,的掺杂浓度增大,光致发光和应力发光强度都先增大后减小,Eu,2+,和Eu,3+,的发射分别在5 mol%和10 mol%时达到最强。应力发光强度与应力的增长是线性关系,Eu,2+,的发射增长量大于Eu,3+,。在实物照片和CIE坐标中观测到光致发光颜色从蓝色逐渐接近红色,应力发光颜色在应力增大时逐渐从粉红色变为紫粉色。该材料的研究将为发光调控提供参考,在应力传感和防伪等领域有着潜在的使用价值。
Sr,2,MgSi,2,O,7,:Eu,2+,,Eu,3+, fibers were prepared by Electrospinning under different atmospheres, and their crystal structure and morphology were studied; Composite materials of Sr,2,MgSi,2,O,7,:Eu,2+,,Eu,3+,-PDMS were obtained by combining fibers with polydimethylsiloxane (PDMS), and their photoluminescence and mechanoluminescence properties were studied. The research results show that the XPS spectrum exhibits characteristic peaks of binding energy of Eu,2+, and Eu,3+, under nitrogen or air conditions; In the photoluminescence spectra of composite materials excited at 360 nm and 395 nm, there are not only blue broadband emissions of Eu,2+, at 469 nm, but also multiple red narrowband emissions of Eu,3+, at 615 nm. Because Eu,3+, is reduced to Eu,2+ ,under charge compensation and is not oxidized under the protection of a rigid structure, it confirms the self reduction phenomenon of Eu,3+, in Sr,2,MgSi,2,O,7,. As the doping concentration of Eu increases, the photoluminescence and mechanoluminescence intensities first increase and then decrease. The emission of Eu,2+, and Eu,3+, reaches their strongest at 5 mol% and 10 mol%, respectively. The intensity of mechanoluminescence is linearly related to the growth of stress, and the emission growth of Eu,2+, is greater than that of Eu,3+,. In physical photos and CIE coordinates, it was observed that the photoluminescence color gradually approached red from blue, and the mechanoluminescence color gradually changed from pink to purple pink as the stress increased. The study of this material will provide reference for luminescence regulation, and has potential usage value in fields such as stress sensing and anti-counterfeiting.
Sr2MgSi2O7:Eu2+,Eu3+纤维自还原应力发光发光调控
Sr2MgSi2O7:Eu2+,Eu3+fibersSelf reductionMechanoluminescenceLuminescence regulation
CHANG K, LI Q, LI Z. Advances in Mechanoluminescence and Its Applications [J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3656-3671. doi: 10.6023/cjoc202006052http://dx.doi.org/10.6023/cjoc202006052
ZHANG J, BAO L, LOU H, et al. Flexible and stretchable mechanoluminescent fiber and fabric[J]. Journal of Materials Chemistry C, 2017, 5(32): 8027-8032. doi: 10.1039/c7tc02428bhttp://dx.doi.org/10.1039/c7tc02428b
QIN S, BIAN J, HAN Y, et al. Intense and efficient green mechanoluminescence in CaLaAl3O7 through Tb3+ doping [J]. Materials Research Bulletin, 2022, 145: 111535. doi: 10.1016/j.materresbull.2021.111535http://dx.doi.org/10.1016/j.materresbull.2021.111535
TU L, XIE Y, LI Z. Advances in Pure Organic Mechanoluminescence Materials [J]. The Journal of Physical Chemistry Letters, 2022, 13(24): 5605-5617. doi: 10.1021/acs.jpclett.2c01283http://dx.doi.org/10.1021/acs.jpclett.2c01283
CHMEL A, SHCHERBAKOV I. Acoustical emission and fractoluminescence from the Ar+-implanted fused SiO2 [J]. Journal of Non-Crystalline Solids, 2021, 570: 121014. doi: 10.1016/j.jnoncrysol.2021.121014http://dx.doi.org/10.1016/j.jnoncrysol.2021.121014
MATSUI H, XU C N, LIU Y, et al. Origin of mechanoluminescence from Mn-activated ZnAl2O4: Triboelectricity-induced electroluminescence [J]. Physical Review B, 2004, 69(23): 235109. doi: 10.1103/physrevb.69.235109http://dx.doi.org/10.1103/physrevb.69.235109
CHANDRA B P, SONWANE V D, HALDAR B K, et al. Mechanoluminescence glow curves of rare-earth doped strontium aluminate phosphors [J]. Optical Materials, 2011, 33(3): 444-451. doi: 10.1016/j.optmat.2010.10.014http://dx.doi.org/10.1016/j.optmat.2010.10.014
PARK H J, KIM S M, LEE J H, et al. Self-powered motion-driven triboelectric electroluminescence textile system [J]. ACS applied materials & interfaces, 2019, 11(5): 5200-5207. doi: 10.1021/acsami.8b16023http://dx.doi.org/10.1021/acsami.8b16023
敖宇辰, 王谨, 蔡格梅. 无机应力发光材料的发光特性、发光机理及应用研究进展[J]. 发光学报, 2023, 44(06): 942-963. doi: 10.37188/CJL.20220421http://dx.doi.org/10.37188/CJL.20220421
AO YC, WANG J, CAI GM. Advances in luminescence characteristics, luminescence mechanisms and applications of inorganic mechanoluminescent materials[J]. Chinese Journal of Luminescence, 2023, 44(06): 942-963. doi: 10.37188/CJL.20220421http://dx.doi.org/10.37188/CJL.20220421
KEREKES T W, YOU H, HEMMATIAN T, et al. Enhancement of mechanoluminescence sensitivity of SrAl2O4:Eu2+,Dy3+/Epoxy composites by ultrasonic curing treatment method [J]. Composite Interfaces, 2020(3): 1-23. doi: 10.1080/09276440.2020.1740522http://dx.doi.org/10.1080/09276440.2020.1740522
CHEN C, ZHUANG Y, LI X, et al. Achieving Remote Stress and Temperatur Dual-Modal Imaging by Double-Lanthanide-Activated Mechanoluminescent Materials [J]. Advanced Functional Materials, 2021, 31(25): 2101567. doi: 10.1002/adfm.202101567http://dx.doi.org/10.1002/adfm.202101567
WANG H, CHEN X, TIAN Z, et al. Efficient color manipulation of zinc sulfide-based mechanoluminescent elastomers for visualized sensing and anti-counterfeiting [J]. Journal of Luminescence, 2020, 228: 117590. doi: 10.1016/j.jlumin.2020.117590http://dx.doi.org/10.1016/j.jlumin.2020.117590
LI C, XU C N, ZHANG L, et al. Dynamic visualization of stress distribution on metal by mechanoluminescence images[J]. Journal of Visualization, 2008, 11: 329-335. doi: 10.1007/bf03182201http://dx.doi.org/10.1007/bf03182201
LIU S, LIU R, YANG X, et al. New mode of stress sensing in multicolor (Ca1-xSrx)8Mg3Al2Si7O28:Eu2+ solid-solution compounds[J]. Nano Energy, 2022, 93: 106799. doi: 10.1016/j.nanoen.2021.106799http://dx.doi.org/10.1016/j.nanoen.2021.106799
FANG H, QIU G, LI J, et al. Sr2+ substitution for Ca2+ and Eu2+, Dy3+ co-doping enhance mechanoluminescence of CaAl2Si2O8 phosphors[J]. Journal of Alloys and Compounds, 2018, 763: 267-272. doi: 10.1016/j.jallcom.2018.05.294http://dx.doi.org/10.1016/j.jallcom.2018.05.294
FENG A, MICHELS S, LAMBERTI A, et al. Relating structural phase transitions to mechanoluminescence: The case of the Ca1-xSrxAl2Si2O8:1% Eu2+, 1% Pr3+ anorthite[J]. Acta Materialia, 2020, 183: 493-503. doi: 10.1016/j.actamat.2019.11.014http://dx.doi.org/10.1016/j.actamat.2019.11.014
KADUKAR M R, YAWALKAR P W, CHOITHRANI R, et al. Mechanoluminescence, thermoluminescence, photoluminescence studies on Ca3Y2Si3O12:RE3+(RE3+ = Dy3+ and Eu3+) phosphors[J]. Luminescence, 2015, 30(8): 1219-1225. doi: 10.1002/bio.2884http://dx.doi.org/10.1002/bio.2884
LV H, WANG Y, PAN Z. Photo-and mechano-luminescent properties of color-tunable (Eu2+, Dy3+)-co-doped strontium/calcium aluminate phosphor[J]. Journal of Luminescence, 2022, 246: 118841. doi: 10.1016/j.jlumin.2022.118841http://dx.doi.org/10.1016/j.jlumin.2022.118841
MA Z, ZHOU J, ZHANG J, et al. Mechanics-induced triple-mode anticounterfeiting and moving tactile sensing by simultaneously utilizing instantaneous and persistent mechanoluminescence[J]. Materials Horizons, 2019, 6(10): 2003-2008. doi: 10.1039/c9mh01028ahttp://dx.doi.org/10.1039/c9mh01028a
YANG Y L, LI T, GUO F, et al. Multiple color emission of mechanoluminescence and photoluminescence from SrZnSO:Bi3+ for multimode anticounterfeiting[J]. Inorganic Chemistry, 2022, 61(10): 4302-4311. doi: 10.1021/acs.inorgchem.1c03167http://dx.doi.org/10.1021/acs.inorgchem.1c03167
李婷, 杨云凌, 范雨婷, 等. 通过Pr3+掺杂SrZnOS实现应力发光颜色调控及其应力发光机理[J]. 发光学报, 2021, 42(06): 818-828. doi: 10.37188/cjl.20210094http://dx.doi.org/10.37188/cjl.20210094
LI T, YANG YL, FAN YT, et al. Pr3+ doped SrZnOS to achieve tunable mechanoluminescence color and mechanoluminescence mechanism[J]. Chinese Journal of Luminescence, 2021, 42(06): 818-828. doi: 10.37188/cjl.20210094http://dx.doi.org/10.37188/cjl.20210094
LIU S, LIU R, YANG X, et al. New mode of stress sensing in multicolor (Ca1-xSrx)8Mg3Al2Si7O28:Eu2+ solid-solution compounds[J]. Nano Energy, 2022, 93: 106799. doi: 10.1016/j.nanoen.2021.106799http://dx.doi.org/10.1016/j.nanoen.2021.106799
LV H, WANG Y, PAN Z. Photo-and mechano-luminescent properties of color-tunable (Eu2+, Dy3+)-co-doped strontium/calcium aluminate phosphor[J]. Journal of Luminescence, 2022, 246: 118841. doi: 10.1016/j.jlumin.2022.118841http://dx.doi.org/10.1016/j.jlumin.2022.118841
WANG C, LIU Z, YAKOVLEV A N, et al. Controlled mechano-luminescence properties of SrGa2O4:Tb3+ co-doping with Dy3+ and Eu3+ ions[J]. RSC advances, 2023, 13(24): 16405-16412. doi: 10.1039/d3ra01985chttp://dx.doi.org/10.1039/d3ra01985c
ZHOU S, CHENG Y, XU J, et al. Design of Ratiometric Dual-Emitting Mechanoluminescence: Lanthanide/Transition-Metal Combination Strategy[J]. Laser & Photonics Reviews, 2022, 16(5): 2100666. doi: 10.1002/lpor.202100666http://dx.doi.org/10.1002/lpor.202100666
CHEN H, WU L, BO F, et al. Coexistence of self-reduction from Mn4+ to Mn2+ and elastico-mechanoluminescence in diphase KZn(PO3)3:Mn2+[J]. Journal of Materials Chemistry C, 2019, 7(23): 7096-7103. doi: 10.1039/c9tc01062ahttp://dx.doi.org/10.1039/c9tc01062a
CHEN H, LEI Y, LI J, et al. Intense luminescence and good thermal stability in a Mn2+-activated Mg-based phosphor with self-Reduction[J]. Inorganic Chemistry, 2022, 61(14): 5495-5501. doi: 10.1021/acs.inorgchem.1c03741http://dx.doi.org/10.1021/acs.inorgchem.1c03741
LIEN N T Q, TRAC N N, DO P V, et al. Judd-Ofelt analysis of Eu3+ and adjustable emission in Eu3+/Eu2+ co-doped sodium aluminosilicate glasses[J]. Journal of Physics and Chemistry of Solids, 2022, 164: 110637. doi: 10.1016/j.jpcs.2022.110637http://dx.doi.org/10.1016/j.jpcs.2022.110637
ZHANG W, CHENG Y, LIN H, et al. Ratiometric mechanoluminescence in LiSrPO4:Eu2+/Eu3+ for stress sensing: Dopant concentration dependent sensitivity[J]. Materials Research Bulletin, 2023, 163: 112219. doi: 10.1016/j.materresbull.2023.112219http://dx.doi.org/10.1016/j.materresbull.2023.112219
伏振兴, 刘碧蕊. SrAl2O4:Eu荧光粉中Eu的价态分析与发光特性研究[J].宁夏师范学院学报, 2021, 42(07): 39-45. FU ZX, LIU BR. Study on luminescence properties and valence analysis of SrAl204:Eu powder samples[J]. Journal of Ningxia Normal University. 2021, 42(07): 39-45. doi: 10.3969/j.issn.1674-1331.2021.07.006http://dx.doi.org/10.3969/j.issn.1674-1331.2021.07.006
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构