浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学, 北京 100049
[ "李一爽(1997-),女,湖北秭归人,硕士研究生,2019年于华中科技大学获得学士学位,主要从事钙钛矿电致发光器件的研究。liyishuang20@mails.ucas.ac.cn " ]
[ "郭晓阳(1982-),女,吉林长春人,博士,副研究员,博士生导师,2010年于中国科学院长春应用化学研究所获得博士学位,主要从事新型光电子材料与器件的研究。guoxy@ciomp.ac.cn" ]
纸质出版日期:2023-09-05,
收稿日期:2023-04-27,
修回日期:2023-05-08,
扫 描 看 全 文
李一爽,包志强,邹德月等.透明发光二极管研究进展[J].发光学报,2023,44(09):1527-1545.
LI Yishuang,BAO Zhiqiang,ZOU Deyue,et al.Research Progress of Transparent Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(09):1527-1545.
李一爽,包志强,邹德月等.透明发光二极管研究进展[J].发光学报,2023,44(09):1527-1545. DOI: 10.37188/CJL.20230111.
LI Yishuang,BAO Zhiqiang,ZOU Deyue,et al.Research Progress of Transparent Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(09):1527-1545. DOI: 10.37188/CJL.20230111.
透明显示是未来显示的发展方向之一,在智能窗、可穿戴电子产品、虚拟现实技术、触摸屏等领域有着巨大的应用潜力。随着有机、量子点、钙钛矿等新型发光材料的出现,发光二极管的亮度、效率和稳定性飞速发展,然而,在此基础上实现两侧对称发光的高性能透明发光二极管仍是一项具有挑战性的工作。本文从有机、量子点、钙钛矿三种新型发光材料出发,综述了利用不同透明电极实现透明化的具体方案,概括了各类透明电极的特点、优势及不足,最后对透明显示的发展进行了展望。
Transparent display is one of the development directions for future displays, with huge application potential in fields such as smart windows, wearable electronic products, virtual reality technology, and touch screens. With the emergence of new luminescent materials such as organic, quantum dots, and perovskites, the brightness, efficiency, and stability of light-emitting diodes have rapidly developed. However, achieving high-performance transparent light-emitting diodes with symmetrical luminescence on both sides remains a challenging task. This article starts from three new luminescent materials, namely organics, quantum dots, and perovskites, and summarizes specific schemes for achieving transparency using different transparent electrodes. It summarizes the characteristics, advantages, and disadvantages of various transparent electrodes, and finally prospects the development of transparent displays.
透明显示发光二极管透明电极发光材料
transparent displaylight-emitting diodestransparent electrodesluminescent materials
欧剑峰. 高效无机钙钛矿发光二极管及其透明化的研究 [D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2022.
OU J F. Research on Efficient and Transparency of Inorganic Perovskite Light⁃emitting Diodes [D]. Changchun: Chang⁃ chun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2022. (in Chinese)
LIU L H, CAO K, CHEN S F, et al. Toward see-through optoelectronics: transparent light-emitting diodes and solar cells [J]. Adv. Opt. Mater., 2020, 8(22): 2001122-1-31. doi: 10.1002/adom.202001122http://dx.doi.org/10.1002/adom.202001122
ZHELUDEV N. The life and times of the LED:a 100-year history [J]. Nat. Photonics, 2007, 1(4): 189-192. doi: 10.1038/nphoton.2007.34http://dx.doi.org/10.1038/nphoton.2007.34
MATSUSHIMA T, BENCHEIKH F, KOMINO T, et al. High performance from extraordinarily thick organic light-emitting diodes [J]. Nature, 2019, 572(7770): 502-506. doi: 10.1038/s41586-019-1435-5http://dx.doi.org/10.1038/s41586-019-1435-5
ANIKEEVA P O, HALPERT J E, BAWENDI M G, et al. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum [J]. Nano Lett., 2009, 9(7): 2532-2536. doi: 10.1021/nl9002969http://dx.doi.org/10.1021/nl9002969
LI G R, RIVAROLA F W R, DAVIS N J L K, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method [J]. Adv. Mater., 2016, 28(18): 3528-3534. doi: 10.1002/adma.201600064http://dx.doi.org/10.1002/adma.201600064
CHUNG C H, KO Y W, KIM Y H, et al. Improvement in performance of transparent organic light-emitting diodes with increasing sputtering power in the deposition of indium tin oxide cathode [J]. Appl. Phys. Lett., 2005, 86(9): 093504-1-3. doi: 10.1063/1.1869534http://dx.doi.org/10.1063/1.1869534
O’CONNOR B, HAUGHN C, AN K H, et al. Transparent and conductive electrodes based on unpatterned, thin metal films [J]. Appl. Phys. Lett., 2008, 93(22): 223304-1-3. doi: 10.1063/1.3028046http://dx.doi.org/10.1063/1.3028046
KANG M G, XU T, PARK H J, et al. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes [J]. Adv. Mater., 2010, 22(39): 4378-4383. doi: 10.1002/adma.201001395http://dx.doi.org/10.1002/adma.201001395
KANG M G, GUO L J. Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes [J]. Adv. Mater., 2007, 19(10): 1391-1396. doi: 10.1002/adma.200700134http://dx.doi.org/10.1002/adma.200700134
LEE J Y, CONNOR S T, CUI Y, et al. Solution-processed metal nanowire mesh transparent electrodes [J]. Nano Lett., 2008, 8(2): 689-692. doi: 10.1021/nl073296ghttp://dx.doi.org/10.1021/nl073296g
BARI B, LEE J, JANG T, et al. Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes [J]. J. Mater. Chem. A, 2016, 4(29): 11365-11371. doi: 10.1039/c6ta03308chttp://dx.doi.org/10.1039/c6ta03308c
VOSGUERITCHIAN M, LIPOMI D J, BAO Z N. Highly conductive and transparent PEDOT∶PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes [J]. Adv. Funct. Mater., 2012, 22(2): 421-428. doi: 10.1002/adfm.201101775http://dx.doi.org/10.1002/adfm.201101775
HECHT D S, HU L B, IRVIN G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures [J]. Adv. Mater., 2011, 23(13): 1482-1513. doi: 10.1002/adma.201003188http://dx.doi.org/10.1002/adma.201003188
WANG Y, TONG S W, XU X F, et al. Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells [J]. Adv. Mater., 2011, 23(13): 1514-1518. doi: 10.1002/adma.201003673http://dx.doi.org/10.1002/adma.201003673
MORALES-MASIS M, DE WOLF S, WOODS-ROBINSON R, et al. Transparent electrodes for efficient optoelectronics [J]. Adv. Electron. Mater., 2017, 3(5): 1600529-1-18. doi: 10.1002/aelm.201600529http://dx.doi.org/10.1002/aelm.201600529
LI D D, LAI W Y, ZHANG Y Z, et al. Printable transparent conductive films for flexible electronics [J]. Adv. Mater., 2018, 30(10): 1704738-1-24. doi: 10.1002/adma.201704738http://dx.doi.org/10.1002/adma.201704738
XIANG H Y, LI Y Q, ZHOU L, et al. Outcoupling-enhanced flexible organic light-emitting diodes on ameliorated plastic substrate with built-in indium-tin-oxide-free transparent electrode [J]. ACS Nano, 2015, 9(7): 7553-7562. doi: 10.1021/acsnano.5b02826http://dx.doi.org/10.1021/acsnano.5b02826
TAE LIM J, LEE H, CHO H, et al. Flexion bonding transfer of multilayered graphene as a top electrode in transparent organic light-emitting diodes [J]. Sci. Rep., 2015, 5(1): 17748-1-11. doi: 10.1038/srep17748http://dx.doi.org/10.1038/srep17748
OU Q D, ZHOU L, LI Y Q, et al. Extremely efficient white organic light-emitting diodes for general lighting [J]. Adv. Funct. Mater., 2014, 24(46): 7249-7256. doi: 10.1002/adfm.201402026http://dx.doi.org/10.1002/adfm.201402026
HUNG L S, TANG C W. Interface engineering in preparation of organic surface-emitting diodes [J]. Appl. Phys. Lett., 1999, 74(21): 3209-3211. doi: 10.1063/1.124107http://dx.doi.org/10.1063/1.124107
MEYER J, WINKLER T, HAMWI S, et al. Transparent inverted organic light-emitting diodes with a tungsten oxide buffer layer [J]. Adv. Mater., 2008, 20(20): 3839-3843. doi: 10.1002/adma.200800949http://dx.doi.org/10.1002/adma.200800949
AFRE R A, SHARMA N, SHARON M, et al. Transparent conducting oxide films for various applications: a review [J]. Rev. Adv. Mater. Sci., 2018, 53(1): 79-89. doi: 10.1515/rams-2018-0006http://dx.doi.org/10.1515/rams-2018-0006
占红明, 饶海波, 张化福. 基于有机电致发光显示的透明导电膜ITO [J]. 液晶与显示, 2004, 19(5): 386-390. doi: 10.3969/j.issn.1007-2780.2004.05.013http://dx.doi.org/10.3969/j.issn.1007-2780.2004.05.013
ZHAN H M, RAO H B, ZHANG H F. Transparent conducting films ITO based on organic light-emitting diodes display [J]. Chin. J. Liq. Cryst. Disp., 2004, 19(5): 386-390. (in Chinese). doi: 10.3969/j.issn.1007-2780.2004.05.013http://dx.doi.org/10.3969/j.issn.1007-2780.2004.05.013
GU G, BULOVIĆ V, BURROWS P E, et al. Transparent organic light emitting devices [J]. Appl. Phys. Lett., 1996, 68(19): 2606-2608. doi: 10.1063/1.116196http://dx.doi.org/10.1063/1.116196
JI W Y, ZHANG L T, XU K, et al. Semitransparent white organic light-emitting devices with symmetrical electrode structure [J]. Org. Electron., 2011, 12(12): 2192-2197. doi: 10.1016/j.orgel.2011.09.011http://dx.doi.org/10.1016/j.orgel.2011.09.011
PARTHASARATHY G, BURROWS P E, KHALFIN V, et al. A metal-free cathode for organic semiconductor devices [J]. Appl. Phys. Lett., 1998, 72(17): 2138-2140. doi: 10.1063/1.121301http://dx.doi.org/10.1063/1.121301
PARTHASARATHY G, ADACHI C, BURROWS P E, et al. High-efficiency transparent organic light-emitting devices [J]. Appl. Phys. Lett., 2000, 76(15): 2128-2130. doi: 10.1063/1.126275http://dx.doi.org/10.1063/1.126275
MEYER J, GÖRRN P, HAMWI S, et al. Indium-free transparent organic light emitting diodes with Al doped ZnO electrodes grown by atomic layer and pulsed laser deposition [J]. Appl. Phys. Lett., 2008, 93(7): 073308-1-3. doi: 10.1063/1.2975176http://dx.doi.org/10.1063/1.2975176
SONG M G, KIM K S, YANG H I, et al. Highly reliable and transparent Al doped Ag cathode fabricated using thermal evaporation for transparent OLED applications [J]. Org. Electron., 2020, 76: 105418-1-8. doi: 10.1016/j.orgel.2019.105418http://dx.doi.org/10.1016/j.orgel.2019.105418
FAN J C C, BACHNER F J, FOLEY G H, et al. Transparent heat‐mirror films of TiO2/Ag/TiO2 for solar energy collection and radiation insulation [J]. Appl. Phys. Lett., 1974, 25(12): 693-695. doi: 10.1063/1.1655364http://dx.doi.org/10.1063/1.1655364
PARK Y S, PARK H K, JEONG J A, et al. Comparative investigation of transparent ITO/Ag/ITO and ITO/Cu/ITO electrodes grown by dual-target DC sputtering for organic photovoltaics [J]. J. Electrochem. Soc., 2009, 156(7): H588-H594. doi: 10.1149/1.3131362http://dx.doi.org/10.1149/1.3131362
LIANG J Q, GUO X Y, SONG L, et al. Transparent perovskite light-emitting diodes by employing organic-inorganic multilayer transparent top electrodes [J]. Appl. Phys. Lett., 2017, 111(21): 213301-1-5. doi: 10.1063/1.4992039http://dx.doi.org/10.1063/1.4992039
涂爱国, 周翔. 具有Au/MoO3空穴注入层的有机发光二极管 [J]. 发光学报, 2010, 31(2): 157-161.
TU A G, ZHOU X. OLEDs with Au/MoO3 hole injection layer [J]. Chin. J. Lumin., 2010, 31(2): 157-161. (in Chinese)
KIM D Y, HAN Y C, KIM H C, et al. Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes [J]. Adv. Funct. Mater., 2015, 25(46): 7145-7153. doi: 10.1002/adfm.201502542http://dx.doi.org/10.1002/adfm.201502542
KIM G W, LAMPANDE R, BOIZOT J, et al. An efficient nano-composite layer for highly transparent organic light emitting diodes [J]. Nanoscale, 2014, 6(7): 3810-3817. doi: 10.1039/c3nr05861ahttp://dx.doi.org/10.1039/c3nr05861a
TIAN B L, WILLIAMS G, BAN D Y, et al. Transparent organic light-emitting devices using a MoO3/Ag/MoO3 cathode [J]. J. Appl. Phys., 2011, 110(10): 104507-1-6. doi: 10.1063/1.3662194http://dx.doi.org/10.1063/1.3662194
XIANG H Y, LI Y Q, MENG S S, et al. Extremely efficient transparent flexible organic light-emitting diodes with nanostructured composite electrodes [J]. Adv. Opt. Mater., 2018, 6(21): 1800831-1-9. doi: 10.1002/adom.201800831http://dx.doi.org/10.1002/adom.201800831
CHAE H, PARK Y, JO Y, et al. Blue transparent OLEDs with high stability and transmittance for modulating sleep disorders [J]. Adv. Mater. Interf., 2023, 10(11): 2202443-1-10. doi: 10.1002/admi.202370039http://dx.doi.org/10.1002/admi.202370039
HUSEYNOVA G, HYUN KIM Y, LEE J H, et al. Rising advancements in the application of PEDOT∶PSS as a prosperous transparent and flexible electrode material for solution-processed organic electronics [J]. J. Inf. Disp., 2020, 21(2): 71-91. doi: 10.1080/15980316.2019.1707311http://dx.doi.org/10.1080/15980316.2019.1707311
HUSEYNOVA G, LIM Y J, GASONOO A, et al. Solution-processed colored electrodes for ITO-free blue phosphorescent organic light-emitting diodes [J]. J. Inf. Disp., 2021, 22(1): 21-30. doi: 10.1080/15980316.2020.1790434http://dx.doi.org/10.1080/15980316.2020.1790434
HUSEYNOVA G, LEE S H, JOO C W, et al. Dye-doped poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) electrodes for the application in organic light-emitting diodes [J]. Thin Solid Films, 2020, 707: 138078-1-8. doi: 10.1016/j.tsf.2020.138078http://dx.doi.org/10.1016/j.tsf.2020.138078
LIN C Y, HU N W, CHANG H W, et al. Efficient transparent small-molecule organic light-emitting devices adopting laminated transparent top electrodes [J]. Org. Electron., 2016, 28: 25-30. doi: 10.1016/j.orgel.2015.10.003http://dx.doi.org/10.1016/j.orgel.2015.10.003
BONACCORSO F, SUN Z, HASAN T, et al. Graphene photonics and optoelectronics [J]. Nat. Photonics, 2010, 4(9): 611-622. doi: 10.1038/nphoton.2010.186http://dx.doi.org/10.1038/nphoton.2010.186
CHANG J H, LIN W H, WANG P C, et al. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode [J]. Sci. Rep., 2015, 5(1): 9693-1-6. doi: 10.1038/srep09693http://dx.doi.org/10.1038/srep09693
LI W, LI Y Q, SHEN Y, et al. Releasing the trapped light for efficient silver nanowires-based white flexible organic light-emitting diodes [J]. Adv. Opt. Mater., 2019, 7(21): 1900985. doi: 10.1002/adom.201900985http://dx.doi.org/10.1002/adom.201900985
PARK S, LIM J T, JIN W Y, et al. Efficient large-area transparent OLEDs based on a laminated top electrode with an embedded auxiliary mesh [J]. ACS Photonics, 2017, 4(5): 1114-1122. doi: 10.1021/acsphotonics.6b00942http://dx.doi.org/10.1021/acsphotonics.6b00942
ZENG X Y, ZHANG Q K, YU R M, et al. A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer [J]. Adv. Mater., 2010, 22(40): 4484-4488. doi: 10.1002/adma.201001811http://dx.doi.org/10.1002/adma.201001811
ZHANG M, HÖFLE S, CZOLK J, et al. All-solution processed transparent organic light emitting diodes [J]. Nanoscale, 2015, 7(47): 20009-20014. doi: 10.1039/c5nr05820ahttp://dx.doi.org/10.1039/c5nr05820a
JUNG N T, CHEN P R, HO S J, et al. 3D quantum dot-lens fabricated by stereolithographic printing with in-situ UV curing for lighting and displays [J]. Compos. Part B: Eng., 2021, 226: 109350-1-7. doi: 10.1016/j.compositesb.2021.109350http://dx.doi.org/10.1016/j.compositesb.2021.109350
尹勇明, 孟鸿. 量子点、钙钛矿色转换全彩显示应用研究进展 [J]. 发光学报, 2021, 42(4): 419-447. doi: 10.37188/CJL.20200391http://dx.doi.org/10.37188/CJL.20200391
YIN Y M, MENG H. Progress of quantum dots and perovskite as color conversion materials for full-color display [J]. Chin. J. Lumin., 2021, 42(4): 419-447. (in Chinese). doi: 10.37188/CJL.20200391http://dx.doi.org/10.37188/CJL.20200391
MEI S L, LIU X Y, ZHANG W L, et al. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication [J]. ACS Appl. Mater. Interfaces, 2018, 10(6): 5641-5648. doi: 10.1021/acsami.7b17810http://dx.doi.org/10.1021/acsami.7b17810
SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al. Emergence of colloidal quantum-dot light-emitting technologies [J]. Nat. Photonics, 2013, 7(1): 13-23. doi: 10.1038/nphoton.2012.328http://dx.doi.org/10.1038/nphoton.2012.328
WON Y H, CHO O, KIM T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes [J]. Nature, 2019, 575(7784): 634-638. doi: 10.1038/s41586-019-1771-5http://dx.doi.org/10.1038/s41586-019-1771-5
MANDERS J R, QIAN L, TITOV A, et al. High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays [J]. J. Soc. Inf. Disp., 2015, 23(11): 523-528. doi: 10.1002/jsid.393http://dx.doi.org/10.1002/jsid.393
WANG L S, LIN J, HU Y S, et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency [J]. ACS Appl. Mater. Interfaces, 2017, 9(44): 38755-38760. doi: 10.1021/acsami.7b10785http://dx.doi.org/10.1021/acsami.7b10785
SONG J J, WANG O Y, SHEN H B, et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer [J]. Adv. Funct. Mater., 2019, 29(33): 1808377-1-9. doi: 10.1002/adfm.201808377http://dx.doi.org/10.1002/adfm.201808377
DENG Y Z, PENG F, LU Y, et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage [J]. Nat. Photonics, 2022, 16(7): 505-511. doi: 10.1038/s41566-022-00999-9http://dx.doi.org/10.1038/s41566-022-00999-9
JANG E, JANG H. Review: quantum dot light-emitting diodes [J]. Chem. Rev., 2023, 123(8): 4663-4692. doi: 10.1021/acs.chemrev.2c00695http://dx.doi.org/10.1021/acs.chemrev.2c00695
CHOI M K, YANG J, KIM D C, et al. Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes [J]. Adv. Mater., 2018, 30(1): 1703279-1-7. doi: 10.1002/adma.201703279http://dx.doi.org/10.1002/adma.201703279
WANG W G, PENG H R, CHEN S M. Highly transparent quantum-dot light-emitting diodes with sputtered indium-tin-oxide electrodes [J]. J. Mater. Chem. C, 2016, 4(9): 1838-1841. doi: 10.1039/c5tc04223bhttp://dx.doi.org/10.1039/c5tc04223b
HAN C Y, LEE K H, KIM M S, et al. Solution-processed fabrication of highly transparent mono- and tri-colored quantum dot-light-emitting diodes [J]. Org. Electron., 2017, 45: 145-150. doi: 10.1016/j.orgel.2017.03.012http://dx.doi.org/10.1016/j.orgel.2017.03.012
WOOD V, PANZER M J, CARUGE J M, et al. Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture [J]. Nano Lett., 2010, 10(1): 24-29. doi: 10.1021/nl902425ghttp://dx.doi.org/10.1021/nl902425g
MEYER J, WINKLER T, HAMWI S, et al. Highly efficient fully transparent inverted OLEDs [C]. Proceedings of SPIE 6655, Organic Light Emitting Materials and Devices Ⅺ, San Diego, United States, 2007. doi: 10.1117/12.734051http://dx.doi.org/10.1117/12.734051
YANG S, CHEN H S. Highly efficient double-side-emitting electroluminescent quantum dot thin film with transparent MoO3/Ag∶Cu/MoO3 electrode prepared by thermal co-evaporation [J]. Adv. Mater. Technol., 2023, 8(2): 2201077. doi: 10.1002/admt.202201077http://dx.doi.org/10.1002/admt.202201077
YAO L, FANG X, GU W, et al. Fully transparent quantum dot light-emitting diode with a laminated top graphene anode [J]. ACS Appl. Mater. Interfaces, 2017, 9(28): 24005-24010. doi: 10.1021/acsami.7b02026http://dx.doi.org/10.1021/acsami.7b02026
KIM K S, ZHAO Y, JANG H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature, 2009, 457(7230): 706-710. doi: 10.1038/nature07719http://dx.doi.org/10.1038/nature07719
LI X S, CAI W W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils [J]. Science, 2009, 324(5932): 1312-1314. doi: 10.1126/science.1171245http://dx.doi.org/10.1126/science.1171245
SUN J, WANG H Q, SHI H Z, et al. Large-area tunable red/green/blue tri-stacked quantum dot light-emitting diode using sandwich-structured transparent silver nanowires electrodes [J]. ACS Appl. Mater. Interfaces, 2020, 12(43): 48820-48827. doi: 10.1021/acsami.0c15469http://dx.doi.org/10.1021/acsami.0c15469
GUO F, KARL A, XUE Q F, et al. The fabrication of color-tunable organic light-emitting diode displays via solution processing [J]. Light: Sci. Appl., 2017, 6(11): e17094-1-8. doi: 10.1038/lsa.2017.94http://dx.doi.org/10.1038/lsa.2017.94
OK K H, KIM J, PARK S R, et al. Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes [J]. Sci. Rep., 2015, 5(1): 9464-1-8. doi: 10.1038/srep09464http://dx.doi.org/10.1038/srep09464
WEI B W, WU X K, LIAN L, et al. A highly conductive and smooth AgNW/PEDOT∶PSS film treated by hot-pressing as electrode for organic light emitting diode [J]. Org. Electron., 2017, 43: 182-188. doi: 10.1016/j.orgel.2017.01.030http://dx.doi.org/10.1016/j.orgel.2017.01.030
JING P T, JI W Y, ZENG Q H, et al. Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode [J]. Sci. Rep., 2015, 5(1): 12499-1-8. doi: 10.1038/srep12499http://dx.doi.org/10.1038/srep12499
KIM S, KIM J, KIM D, et al. High-performance transparent quantum dot light-emitting diode with patchable transparent electrodes [J]. ACS Appl. Mater. Interfaces, 2019, 11(29): 26333-26338. doi: 10.1021/acsami.9b05969http://dx.doi.org/10.1021/acsami.9b05969
SONG J Z, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides(CsPbX3) [J]. Adv. Mater., 2015, 27(44): 7162-7167. doi: 10.1002/adma.201502567http://dx.doi.org/10.1002/adma.201502567
刘王宇, 陈斐, 孔淑祺, 等. 全无机钙钛矿量子点的合成、性质及发光二极管应用进展 [J]. 发光学报, 2020, 41(2): 117-133. doi: 10.3788/fgxb20204102.0117http://dx.doi.org/10.3788/fgxb20204102.0117
LIU W Y, CHEN F, KONG S Q, et al. Synthesis, properties and application of all-inorganic perovskite quantum dots [J]. Chin. J. Lumin., 2020, 41(2): 117-133. (in Chinese). doi: 10.3788/fgxb20204102.0117http://dx.doi.org/10.3788/fgxb20204102.0117
WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites [J]. Adv. Mater., 2014, 26(10): 1584-1589. doi: 10.1002/adma.201305172http://dx.doi.org/10.1002/adma.201305172
SHAO H, ZHAI Y, WU X F, et al. High brightness blue light-emitting diodes based on CsPb(Cl/Br)3 perovskite QDs with phenethylammonium chloride passivation [J]. Nanoscale, 2020, 12(21): 11728-11734. doi: 10.1039/d0nr02597fhttp://dx.doi.org/10.1039/d0nr02597f
YANG J N, SONG Y, YAO J S, et al. Potassium bromide surface passivation on CsPbI3-xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes [J]. J. Am. Chem. Soc., 2020, 142(6): 2956-2967. doi: 10.1021/jacs.9b11719http://dx.doi.org/10.1021/jacs.9b11719
JIANG J, CHU Z M, YIN Z G, et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations [J]. Adv. Mater., 2022, 34(36): 2204460-1-8. doi: 10.1002/adma.202204460http://dx.doi.org/10.1002/adma.202204460
KIM J S, HEO J M, PARK G S, et al. Ultra-bright, efficient and stable perovskite light-emitting diodes [J]. Nature, 2022, 611(7937): 688-694. doi: 10.1038/s41586-022-05304-whttp://dx.doi.org/10.1038/s41586-022-05304-w
LIU S C, GUO Z Y, WU X X, et al. Zwitterions narrow distribution of perovskite quantum wells for blue light-emitting diodes with efficiency exceeding 15% [J]. Adv. Mater., 2023, 35(3): 2208078-1-11. doi: 10.1002/adma.202208078http://dx.doi.org/10.1002/adma.202208078
WU H, ZHANG Y, ZHANG X Y, et al. Fine-tuned multilayered transparent electrode for highly transparent perovskite light-emitting devices [J]. Adv. Electron. Mater., 2018, 4(1): 1700285-1-7. doi: 10.1002/aelm.201700285http://dx.doi.org/10.1002/aelm.201700285
XIE C C, ZHAO X F, ONG E W Y, et al. Transparent near-infrared perovskite light-emitting diodes [J]. Nat. Commun., 2020, 11(1): 4213-1-5. doi: 10.1038/s41467-020-18110-7http://dx.doi.org/10.1038/s41467-020-18110-7
SIEGLER T D, DUNLAP-SHOHL W A, MENG Y H, et al. Water-accelerated photooxidation of CH3NH3PbI3 perovskite [J]. J. Am. Chem. Soc., 2022, 144(12): 5552-5561. doi: 10.1021/jacs.2c00391http://dx.doi.org/10.1021/jacs.2c00391
KIM T, KIM J H, PARK J W. Semi-transparent organic-inorganic hybrid perovskite light-emitting diodes fabricated under high relative humidity [J]. Solid-State Electron., 2020, 165: 107749-1-10. doi: 10.1016/j.sse.2019.107749http://dx.doi.org/10.1016/j.sse.2019.107749
0
浏览量
311
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构