浏览全部资源
扫码关注微信
长春理工大学物理学院 高功率半导体激光国家重点实验室, 吉林 长春 130022
[ "苏鹏(1997-),男,江苏扬州人,硕士研究生,2019年于长春理工大学光电信息学院获得学士学位,主要从事高功率半导体激光器方面的研究。 E-mail: 1057330512@qq.com" ]
[ "薄报学(1964-),男,河南淇县人,博士,教授,2002年于吉林大学获得博士学位,主要从事高功率半导体激光器技术与应用的研究。 E-mail: bbx@cust.edu.cn" ]
纸质出版日期:2023-04-05,
收稿日期:2022-09-27,
修回日期:2022-10-15,
扫 描 看 全 文
苏鹏,高欣,张悦等.970 nm高功率光栅外腔可调谐半导体激光器[J].发光学报,2023,44(04):664-672.
SU Peng,GAO Xin,ZHANG Yue,et al.High Power 970 nm Semiconductor Laser With A Tunable Grating External Cavity[J].Chinese Journal of Luminescence,2023,44(04):664-672.
苏鹏,高欣,张悦等.970 nm高功率光栅外腔可调谐半导体激光器[J].发光学报,2023,44(04):664-672. DOI: 10.37188/CJL.20220354.
SU Peng,GAO Xin,ZHANG Yue,et al.High Power 970 nm Semiconductor Laser With A Tunable Grating External Cavity[J].Chinese Journal of Luminescence,2023,44(04):664-672. DOI: 10.37188/CJL.20220354.
宽条形半导体激光器广泛应用于激光泵浦、激光加工等领域。针对宽条型半导体激光器输出光谱宽、调谐范围小的问题,采用衍射效率分别为28%和55%的反射式衍射光栅作为反馈元件构建了宽条形970 nm波长光栅外腔半导体激光器。研究了Littrow结构激光器参数对其性能(调谐范围、功率、阈值电流、线宽)的影响。实验结果表明,通过结构优化可得到窄线宽可调谐激光输出,适当地提高温度和使用较高衍射效率的光栅可增加激光器调谐范围,并且较高衍射效率的光栅可降低激光器的阈值电流。基于S偏振入射方式的光栅外腔激光器最大可实现27.87 nm的波长调谐范围,光谱线宽压窄至0.2 nm,输出功率可达1.11 W。
Broad-area stripe semiconductor lasers are widely used in laser pumping, laser processing and other fields. In order to solve the problems of wide output spectrum and small tuning range of broad-area stripe semiconductor lasers, reflective diffraction grating with diffraction efficiency of 28% and 55% was used as a feedback element to construct a broad-area 970 nm semiconductor laser with a grating external cavity. The effect of the parameters of semiconductor laser with a grating external cavity in Littrow configuration on its performance (tuning range, power, threshold current, linewidth) was investigated. The experimental results show that the tunable laser output with narrow linewidth can be obtained by optimizing the structure, the tuning range of the outer cavity laser can be increased by increasing the temperature appropriately, the tuning range of the outer cavity laser can be improved and the threshold current can be reduced by using a grating with higher diffraction efficiency. The maximum wavelength tuning range of semiconductor laser with a grating external cavity based on S-polarization is 27.87 nm, the spectral linewidth pressure is narrowed to 0.2 nm, and the output power can reach 1.11 W.
半导体激光器衍射光栅波长调谐阈值电流
semiconductor laserdiffraction gratingwavelength tuningthreshold current
陈良惠, 杨国文, 刘育衔. 半导体激光器研究进展 [J]. 中国激光, 2020, 47(5): 0500001-1-19. doi: 10.3788/cjl202047.0500001http://dx.doi.org/10.3788/cjl202047.0500001
CHEN L H, YANG G W, LIU Y X. Development of semiconductor lasers [J]. Chin. J. Lasers, 2020, 47(5): 0500001-1-19. (in Chinese). doi: 10.3788/cjl202047.0500001http://dx.doi.org/10.3788/cjl202047.0500001
王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展 [J]. 发光学报, 2015, 36(1): 1-19. doi: 10.3788/fgxb20153601.0001bhttp://dx.doi.org/10.3788/fgxb20153601.0001b
WANG L J, NING Y Q, QIN L, et al. Development of high power diode laser [J]. Chin. J. Lumin., 2015, 36(1): 1-19. (in Chinese). doi: 10.3788/fgxb20153601.0001bhttp://dx.doi.org/10.3788/fgxb20153601.0001b
刘国军, 薄报学, 曲轶, 等. 高功率半导体激光器技术发展与研究 [J]. 红外与激光工程, 2007, 36(S1): 4-6. doi: 10.3969/j.issn.1007-2276.2007.z1.078http://dx.doi.org/10.3969/j.issn.1007-2276.2007.z1.078
LIU G J, BO B X, QU Y, et al. High power semiconductor lasers [J]. Infrared Laser Eng., 2007, 36(S1): 4-6. (in Chinese). doi: 10.3969/j.issn.1007-2276.2007.z1.078http://dx.doi.org/10.3969/j.issn.1007-2276.2007.z1.078
王狮凌, 房丰洲. 大功率激光器及其发展 [J]. 激光与光电子学进展, 2017, 54(9): 090005-1-14. doi: 10.3788/lop54.090005http://dx.doi.org/10.3788/lop54.090005
WANG S L, FANG F Z. High power laser and its development [J]. Laser Optoelectr. Prog., 2017, 54(9): 090005-1-14. (in Chinese). doi: 10.3788/lop54.090005http://dx.doi.org/10.3788/lop54.090005
MUKHTAR S, SUN X B, ASHRY I, et al. Tunable violet laser diode system for optical wireless communication [J]. IEEE Photon. Technol. Lett., 2020, 32(9): 546-549. doi: 10.1109/lpt.2020.2983548http://dx.doi.org/10.1109/lpt.2020.2983548
GASMI K, ALJALAL A, AL-BASHEER W. Blue external-cavity diode laser for NO2 gas detection [C]. Proceedings Volume 11356, Semiconductor Lasers and Laser Dynamics Ⅸ, Strasbourg, France, 2020: 1135616. doi: 10.1117/12.2554539http://dx.doi.org/10.1117/12.2554539
YANG Q F, SHEN B Q, WANG H M, et al. Vernier spectrometer using counterpropagating soliton microcombs [J]. Science, 2019, 363(6430): 965-968. doi: 10.1126/science.aaw2317http://dx.doi.org/10.1126/science.aaw2317
李斌, 高俊, 赵俊, 等. 宽调谐范围光栅外腔窄线宽405 nm蓝紫光半导体激光器研究 [J]. 中国激光, 2015, 42(12): 1202003-1-7. doi: 10.3788/cjl201542.1202003http://dx.doi.org/10.3788/cjl201542.1202003
LI B, GAO J, ZHAO J, et al. Study on broad tuning range and narrow line-width 405 nm blue-violet diode laser with grating external cavity [J]. Chin. J. Lasers, 2015, 42(12): 1202003-1-7. (in Chinese). doi: 10.3788/cjl201542.1202003http://dx.doi.org/10.3788/cjl201542.1202003
NYAUPANE P R, LIKAMWA P L, BRAIMAN Y. Spectral linewidth narrowing of two broad-area blue laser diodes (445 nm) with a common external cavity [J]. Opt. Lett., 2021, 46(11): 2718-2721. doi: 10.1364/ol.425409http://dx.doi.org/10.1364/ol.425409
WANG F, LV X Q, LIU G K, et al. 785 nm grating-coupled external-cavity laser for shifted-excitation Raman difference spectroscopy [J]. J. Opt. Technol., 2017, 84(2): 89-94. doi: 10.1364/jot.84.000089http://dx.doi.org/10.1364/jot.84.000089
FANG X, WANG P, SONG Y Y, et al. High-power external cavity diode laser with narrow linewidth emission and adjustable polarization state at 445 nm [J]. Opt. Eng., 2022, 61(4): 046103-1-12. doi: 10.1117/1.oe.61.4.046103http://dx.doi.org/10.1117/1.oe.61.4.046103
OJANEN S P, VIHERIÄLÄ J, CHERCHI M, et al. GaSb diode lasers tunable around 2.6 μm using silicon photonics resonators or external diffractive gratings [J]. Appl. Phys. Lett., 2020, 116(8): 081105-1-5. doi: 10.1063/1.5140062http://dx.doi.org/10.1063/1.5140062
花金平, 江毅. 可调谐外腔半导体激光器研究进展 [J]. 半导体光电, 2021, 42(1): 11-19. doi: 10.16818/j.issn1001-5868.2021.01.002http://dx.doi.org/10.16818/j.issn1001-5868.2021.01.002
HUA J P, JIANG Y. Recent progresses of tunable external cavity diode laser [J]. Semi. Opt., 2021, 42(1): 11-19. (in Chinese). doi: 10.16818/j.issn1001-5868.2021.01.002http://dx.doi.org/10.16818/j.issn1001-5868.2021.01.002
DE LABACHELERIE M, PASSEDAT G. Mode-hop suppression of Littrow grating-tuned lasers [J]. Appl. Opt., 1993, 32(3): 269-274. doi: 10.1364/ao.32.000269http://dx.doi.org/10.1364/ao.32.000269
HARVEY K C, MYATT C J. External-cavity diode laser using a grazing-incidence diffraction grating [J]. Opt. Lett., 1991, 16(12): 910-912. doi: 10.1364/ol.16.000910http://dx.doi.org/10.1364/ol.16.000910
雷平顺. 光栅外腔半导体激光器的输出特性研究 [D]. 长春: 长春理工大学, 2011. doi: http://ir.semi.ac.cn/handle/172111/21764http://dx.doi.org/http://ir.semi.ac.cn/handle/172111/21764
LEI P S. Study on the Output Characteristics of Grating External⁃cavity Semiconductor Lasers [D]. Changchun: Changchun University of Science and Technology, 2011. (in Chinese). doi: http://ir.semi.ac.cn/handle/172111/21764http://dx.doi.org/http://ir.semi.ac.cn/handle/172111/21764
丁鼎. 蓝光大功率GaN基光栅外腔可调谐激光器研究 [D]. 厦门: 厦门大学, 2018. doi: 10.1016/j.optlastec.2017.03.015http://dx.doi.org/10.1016/j.optlastec.2017.03.015
DING D. Study of Blue High⁃power GaN⁃based Grating⁃coupled External Cavity Tunable Laser [D]. Xiamen: Xiamen University, 2018. (in Chinese). doi: 10.1016/j.optlastec.2017.03.015http://dx.doi.org/10.1016/j.optlastec.2017.03.015
曾华林, 江鹏飞, 谢福增. 半导体激光器温度控制研究 [J]. 激光与红外, 2004, 34(5): 339-340. doi: 10.3969/j.issn.1001-5078.2004.05.005http://dx.doi.org/10.3969/j.issn.1001-5078.2004.05.005
ZENG H L, JIANG P F, XIE F Z. Temperature control of semiconductor laser for interferometry [J]. Laser Infr., 2004, 34(5): 339-340. (in Chinese). doi: 10.3969/j.issn.1001-5078.2004.05.005http://dx.doi.org/10.3969/j.issn.1001-5078.2004.05.005
赵碧瑶, 井红旗, 仲莉, 等. 半导体激光器边缘绝热封装改善慢轴光束质量 [J]. 中国激光, 2020, 47(1): 0105002-1-11. doi: 10.3788/cjl202047.0105002http://dx.doi.org/10.3788/cjl202047.0105002
ZHAO B Y, JING H Q, ZHONG L, et al. Improving slow-axis laser beam quality of semiconductor laser with edge adiabatic package [J]. Chin. J. Lasers, 2020, 47(1): 0105002-1-11. (in Chinese). doi: 10.3788/cjl202047.0105002http://dx.doi.org/10.3788/cjl202047.0105002
0
浏览量
255
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构