浏览全部资源
扫码关注微信
1.安庆师范大学 电子工程与智能制造学院, 安徽 安庆 246133
2.安徽师范大学 光电材料科学与技术安徽省重点实验室, 安徽 芜湖 241000
3.中国科学技术大学 物理系, 安徽 合肥 230026
[ "闻军(1987-),男,安徽桐城人,博士,教授,2013年于中国科学技术大学获得博士学位,主要从事稀土发光材料的理论计算研究。 E-mail: jwen@aqnu.edu.cn" ]
[ "黄晓晓(1993-),女,安徽淮北人,博士,讲师,2021年于安徽师范大学获得博士学位,主要从事稀土发光材料的理论计算研究。 E-mail: huangxx@aqnu.edu.cn" ]
[ "宁利新(1974-),男,安徽黄山人,博士,教授,2003年于中国科学技术大学获得博士学位,主要从事稀土发光材料的理论计算研究。 E-mail: ninglx@mail.ahnu.edu.cn" ]
纸质出版日期:2022-10-05,
收稿日期:2022-06-20,
修回日期:2022-07-06,
扫 描 看 全 文
闻军,黄晓晓,宁利新等.稀土Ce3+/Eu2+离子和点缺陷发光性质的第一性原理研究[J].发光学报,2022,43(10):1495-150810.37188/CJL.20220247.
WEN Jun,HUANG Xiao-xiao,NING Li-xin,et al.First-principles Calculations on Luminescent Properties of Rare-earth(Ce3+/Eu2+) Ions and Point Defects[J].Chinese Journal of Luminescence,2022,43(10):1495-150810.37188/CJL.20220247.
闻军,黄晓晓,宁利新等.稀土Ce3+/Eu2+离子和点缺陷发光性质的第一性原理研究[J].发光学报,2022,43(10):1495-150810.37188/CJL.20220247. DOI:
WEN Jun,HUANG Xiao-xiao,NING Li-xin,et al.First-principles Calculations on Luminescent Properties of Rare-earth(Ce3+/Eu2+) Ions and Point Defects[J].Chinese Journal of Luminescence,2022,43(10):1495-150810.37188/CJL.20220247. DOI:
近年来,国内外研究者们开展了一系列关于无机荧光粉中稀土离子和点缺陷发光性质的第一性原理研究。本文简要介绍作者与合作者们在该研究领域开展的工作与取得的结果。首先,简要介绍稀土发光材料第一性原理研究常用方法,主要包括:基于密度泛函理论和超单胞模型的点缺陷计算以及基于波函数多组态相互作用的激发态计算。然后,从点缺陷的热力学稳定性与发光机理研究以及稀土离子4f→5d跃迁模拟与激发光谱指认两个方面,详细阐述了第一性原理计算在Ce
3+
和Eu
2+
离子掺杂荧光粉中的具体应用。最后,对稀土发光材料的第一性原理计算研究领域的机遇和挑战进行了简要总结。
Recent years have witnessed the development of first-principles approaches to study luminescent properties of rare-earth ions and point defects in inorganic phosphors. In this article, we briefly describe the progresses made by the authors and co-workers in this field. Firstly, the first-principles-based approaches to rare-earth luminescent materials are introduced. These include density functional theory calculations of point defects based on the supercell model and wavefunction-based multi-configuration
ab initio
calculations of excited states. Then, the applications of the methods to some Ce
3+
- and Eu
2+
-doped phosphors are elaborated from two aspects,
i.e
., thermodynamic stabilities and luminescence mechanisms of point defects, and assignment of 4f→5d excitation spectra of the doped rare-earth ions. Finally, chances and challenges in the field of first-principles calculations on rare-earth luminescent materials are briefly discussed.
稀土离子点缺陷发光机理密度泛函理论多组态相互作用
rare-earth ionspoint defectsluminescence mechanismsdensity functional theorymulti-configuration interaction
YEN W M, SHIONOYA S, YAMAMOTO H. Phosphor Handbook [M]. 2nd ed. Boca Raton: CRC Press, 2007. doi: 10.1201/9781420005233http://dx.doi.org/10.1201/9781420005233
BLASSE G, GRABMAIER B C. Luminescent Materials [M]. Berlin: Springer, 1994. doi: 10.1007/978-3-642-79017-1http://dx.doi.org/10.1007/978-3-642-79017-1
QIAO J W, ZHAO J, LIU Q L, et al. Recent advances in solid-state LED phosphors with thermally stable luminescence [J]. J. Rare Earths, 2019, 37(6): 565-572. doi: 10.1016/j.jre.2018.11.001http://dx.doi.org/10.1016/j.jre.2018.11.001
LI K, SHANG M M, LIAN H Z, et al. Recent development in phosphors with different emitting colors via energy transfer [J]. J. Mater. Chem. C, 2016, 4(24): 5507-5530. doi: 10.1039/c6tc00436ahttp://dx.doi.org/10.1039/c6tc00436a
UEDA J, TANABE S. Review of luminescent properties of Ce3+-doped garnet phosphors: new insight into the effect of crystal and electronic structure [J]. Opt. Mater.: Ⅹ, 2019, 1: 100018-1-19. doi: 10.1016/j.omx.2019.100018http://dx.doi.org/10.1016/j.omx.2019.100018
XIA Z G, MEIJERINK A. Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications [J]. Chem. Soc. Rev., 2017, 46(1): 275-299. doi: 10.1039/c6cs00551ahttp://dx.doi.org/10.1039/c6cs00551a
QIN X, LIU X W, HUANG W, et al. Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects [J]. Chem. Rev., 2017, 117(5): 4488-4527. doi: 10.1021/acs.chemrev.6b00691http://dx.doi.org/10.1021/acs.chemrev.6b00691
LI S X, XIE R J, TAKEDA T, et al. Critical review-narrow-band nitride phosphors for wide color-gamut white LED backlighting [J]. ECS J. Solid State Sci. Technol., 2018, 7(1): R3064-R3078. doi: 10.1149/2.0051801jsshttp://dx.doi.org/10.1149/2.0051801jss
解荣军, 李淑星. 氮化物荧光粉的前世今生: 材料探索和应用的新启示 [J]. 发光学报, 2020, 41(6): 646-650.
XIE R J, LI S X. Past and present of nitride phosphors: new inspirations on materials discovery and applications [J]. Chin. J. Lumin., 2020, 41(6): 646-650. (in Chinese)
孙怀洋, 蒋鸿. 稀土发光材料理论计算方法研究现状 [J]. 中国稀土学报, 2021, 39(3): 350-375. doi: 10.11785/S1000-4343.20210303http://dx.doi.org/10.11785/S1000-4343.20210303
SUN H Y, JIANG H. Current status of theoretical approaches to rare earth luminescent materials [J]. J. Chin. Soc. Rare Earths, 2021, 39(3): 350-375. (in Chinese). doi: 10.11785/S1000-4343.20210303http://dx.doi.org/10.11785/S1000-4343.20210303
赵皎印, 索浩, 李磊朋, 等. 荧光热增强型稀土掺杂上转换发光材料研究进展 [J]. 发光学报, 2021, 42(11): 1673-1685. doi: 10.37188/CJL.20210265http://dx.doi.org/10.37188/CJL.20210265
ZHAO J Y, SUO H, LI L P. Recent advances in rare-earth doped upconverison materials with thermally-enhanced emissions [J]. Chin. J. Lumin., 2021, 42(11): 1673-1685. (in Chinese). doi: 10.37188/CJL.20210265http://dx.doi.org/10.37188/CJL.20210265
CARNALL W T, GOODMAN G L, RAJNAK K, et al. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 [J]. J. Chem. Phys., 1989, 90(7): 3443-3457. doi: 10.1063/1.455853http://dx.doi.org/10.1063/1.455853
BURDICK G W, REID M F. 4fn‒4fn-15d transitions [J]. Handb. Phys. Chem. Rare Earths, 2007, 37: 61-98.
JUDD B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962, 127(3): 750-761. doi: 10.1103/physrev.127.750http://dx.doi.org/10.1103/physrev.127.750
JUDD B R. Ligand polarizations and lanthanide ion spectra [M].KRAMER P, RIECKERS A. Group Theoretical Methods in Physics: Sixth International Colloquium Tübingen 1977. Berlin: Springer, 1978. doi: 10.1007/3-540-08848-2http://dx.doi.org/10.1007/3-540-08848-2
OFELT G S. Intensities of crystal spectra of rare‐earth ions [J]. J. Chem. Phys., 1962, 37(3): 511-520. doi: 10.1063/1.1701366http://dx.doi.org/10.1063/1.1701366
DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds [J]. Phys. Rev. B, 2000, 62(23): 15640-15649. doi: 10.1103/physrevb.62.15640http://dx.doi.org/10.1103/physrevb.62.15640
DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. Ⅱ. Chloride, bromide, and iodide compounds [J]. Phys. Rev. B, 2000, 62(23): 15650-15659. doi: 10.1103/physrevb.62.15650http://dx.doi.org/10.1103/physrevb.62.15650
DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. Ⅲ. Oxides containing ionic complexes [J]. Phys. Rev. B, 2001, 64(12): 125117-1-12. doi: 10.1103/physrevb.64.125117http://dx.doi.org/10.1103/physrevb.64.125117
DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. Ⅳ. Aluminates and “simple” oxides [J]. J. Lumin., 2002, 99(3): 283-299. doi: 10.1016/s0022-2313(02)00347-2http://dx.doi.org/10.1016/s0022-2313(02)00347-2
DORENBOS P. Relating the energy of the[Xe]5d1 configuration of Ce3+ in inorganic compounds with anion polarizability and cation electronegativity [J]. Phys. Rev. B, 2002, 65(23): 235110-1-6.
DORENBOS P. Systematic behaviour in trivalent lanthanide charge transfer energies [J]. J. Phys. Condens. Matter, 2003, 15(49): 8417-8434. doi: 10.1088/0953-8984/15/49/018http://dx.doi.org/10.1088/0953-8984/15/49/018
DORENBOS P. Modeling the chemical shift of lanthanide 4f electron binding energies [J]. Phys. Rev. B, 2012, 85(16): 165107-1-10. doi: 10.1103/physrevb.85.165107http://dx.doi.org/10.1103/physrevb.85.165107
JIA Y C, MIGLIO A, MIKAMI M, et al. Ab initio study of luminescence in Ce-doped Lu2SiO5: the role of oxygen vacancies on emission color and thermal quenching behavior [J]. Phys. Rev. Mater., 2018, 2(12): 125202-1-13. doi: 10.1103/physrevmaterials.2.125202http://dx.doi.org/10.1103/physrevmaterials.2.125202
BRIK M G, MA C G, PIASECKI M, et al. Locating impurity and defect levels in the host band gap by first-principles calculations: pure and Ce3+-doped YAlO3 [J]. Opt. Mater., 2021, 113: 110843-1-5. doi: 10.1016/j.optmat.2021.110843http://dx.doi.org/10.1016/j.optmat.2021.110843
SU P, MA C G, BRIK M G, et al. A short review of theoretical and empirical models for characterization of optical materials doped with the transition metal and rare earth ions [J]. Opt. Mater., 2018, 79: 129-136. doi: 10.1016/j.optmat.2018.03.032http://dx.doi.org/10.1016/j.optmat.2018.03.032
HE L J, MENG J L, FENG J, et al. Investigation of 4f-related electronic transitions of rare-earth doped ZnO luminescent materials: insights from first-principles calculations [J]. ChemPhysChem, 2020, 21(1): 51-58. doi: 10.1002/cphc.201900981http://dx.doi.org/10.1002/cphc.201900981
WU Y T, YANG G, HAN D, et al. Role of lithium codoping in enhancing the scintillation yield of aluminate garnets [J]. Phys. Rev. Appl., 2020, 13(6): 064060-1-14. doi: 10.1103/physrevapplied.13.064060http://dx.doi.org/10.1103/physrevapplied.13.064060
SONG Z, LIU Q L. Crystal-field splitting of Ce3+ in narrow-band phosphor SrLiAl3N4 [J]. J. Rare Earths, 2021, 39(4): 386-389. doi: 10.1016/j.jre.2020.02.012http://dx.doi.org/10.1016/j.jre.2020.02.012
HUANG B L. Native point defects in CaS: focus on intrinsic defects and rare earth ion dopant levels for up-converted persistent luminescence [J]. Inorg. Chem., 2015, 54(23): 11423-11440. doi: 10.1021/acs.inorgchem.5b02061http://dx.doi.org/10.1021/acs.inorgchem.5b02061
JOOS J J, SMET P F, SEIJO L, et al. Insights into the complexity of the excited states of Eu-doped luminescent materials [J]. Inorg. Chem. Front., 2020, 7(4): 871-888. doi: 10.1039/c9qi01455ahttp://dx.doi.org/10.1039/c9qi01455a
CAI J J, JING W G, CHENG J, et al. First-principles calculations of photoluminescence and defect states of Ce3+-doped (Ca/Sr)2B5O9Cl [J]. Phys. Rev. B, 2019, 99(12): 125107-1-12. doi: 10.1103/physrevb.99.125107http://dx.doi.org/10.1103/physrevb.99.125107
DU M H, SHI H L, ZHANG S B. Electronic shell structures, self-trapped excitons, and defect-bound excitons in Li2B12H12 [J]. J. Mater. Chem. C, 2019, 7(45): 14342-14349. doi: 10.1039/c9tc04150hhttp://dx.doi.org/10.1039/c9tc04150h
FINLEY E, TEHRANI A M, BRGOCH J. Intrinsic defects drive persistent luminescence in monoclinic SrAl2O4∶Eu2+ [J]. J. Phys. Chem. C, 2018, 122(28): 16309-16314.
QU B Y, WANG J T, LIU K, et al. Comprehensive study of the red persistent luminescence mechanism of Y2O2S∶Eu,Ti [J]. Phys. Chem. Chem. Phys., 2019, 21(45): 25118-25125. doi: 10.1039/c9cp04622dhttp://dx.doi.org/10.1039/c9cp04622d
MARTIN R M. Electronic Structure: Basic Theory and Practical Methods [M]. Cambridge: Cambridge University Press, 2004. doi: 10.1017/cbo9780511805769http://dx.doi.org/10.1017/cbo9780511805769
KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140(4A): A1133-A1138. doi: 10.1103/physrev.140.a1133http://dx.doi.org/10.1103/physrev.140.a1133
PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B, 1992, 46(11): 6671-6687. doi: 10.1103/physrevb.46.6671http://dx.doi.org/10.1103/physrevb.46.6671
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868. doi: 10.1103/physrevlett.77.3865http://dx.doi.org/10.1103/physrevlett.77.3865
KRESSE G, MARSMAN M, FURTHMÜLLER J. VASP The Guide, 2015 [EB/OL]. [2022-06-20]. https://cmp.univie.ac.at/research/vasp/https://cmp.univie.ac.at/research/vasp/.
KARLSTRÖM G, LINDH R, MALMQVIST P Å, et al. MOLCAS: a program package for computational chemistry [J]. Comput. Mater. Sci., 2003, 28(2): 222-239. doi: 10.1016/s0927-0256(03)00109-5http://dx.doi.org/10.1016/s0927-0256(03)00109-5
PERDEW J P, ERNZERHOF M, BURKE K. Rationale for mixing exact exchange with density functional approximations [J]. J. Chem. Phys., 1996, 105(22): 9982-9985. doi: 10.1063/1.472933http://dx.doi.org/10.1063/1.472933
KRUKAU A V, VYDROV O A, IZMAYLOV A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals [J]. J. Chem. Phys., 2006, 125: 224106. doi: 10.1063/1.2404663http://dx.doi.org/10.1063/1.2404663
HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential [J]. J. Chem. Phys., 2003, 118(18): 8207-8215. doi: 10.1063/1.1564060http://dx.doi.org/10.1063/1.1564060
VAN DE WALLE C G, NEUGEBAUER J. First-principles calculations for defects and impurities: applications to Ⅲ-nitrides [J]. J. Appl. Phys., 2004, 95(8): 3851-3879. doi: 10.1063/1.1682673http://dx.doi.org/10.1063/1.1682673
FREYSOLDT C, GRABOWSKI B, HICKEL T, et al. First-principles calculations for point defects in solids [J]. Rev. Mod. Phys., 2014, 86(1): 253-305. doi: 10.1103/revmodphys.86.253http://dx.doi.org/10.1103/revmodphys.86.253
FREYSOLDT C, NEUGEBAUER J, VAN DE WALLE C G. Fully ab initio finite-size corrections for charged-defect supercell calculations [J]. Phys. Rev. Lett., 2009, 102(1): 016402-1-4. doi: 10.1103/physrevlett.102.016402http://dx.doi.org/10.1103/physrevlett.102.016402
STRUCK C W, FONGER W H. Understanding Luminescence Spectra and Efficiency Using Wp and Related Functions [M]. Berlin, Heidelberg: Springer Science & Business Media, 2012.
BARANDIARÁN Z, SEIJO L. The ab initio model potential representation of the crystalline environment. Theoretical study of the local distortion on NaCl∶Cu+ [J]. J. Chem. Phys., 1988, 89(9): 5739-5746. doi: 10.1063/1.455549http://dx.doi.org/10.1063/1.455549
WAHLGREN U. The effective core potential method [M]. ROOS B O. Lecture Notes in Quantum Chemistry. Berlin: Springer, 1992: 413-421. doi: 10.1007/978-3-642-58150-2_8http://dx.doi.org/10.1007/978-3-642-58150-2_8
NING L X, JI X W, DONG Y Y, et al. First-principles study of Ce-doped Y3Al5O12 with Si—N incorporation: electronic structures and optical properties [J]. J. Mater. Chem. C, 2016, 4(23): 5214-5221. doi: 10.1039/c6tc01691jhttp://dx.doi.org/10.1039/c6tc01691j
WEN J, DUAN C K, NING L X, et al. Spectroscopic distinctions between two types of Ce3+ Ions in X2-Y2SiO5: a theoretical investigation [J]. J. Phys. Chem. A, 2014, 118(27): 4988-4994. doi: 10.1021/jp5050207http://dx.doi.org/10.1021/jp5050207
SEIJO L, BARANDIARÁN Z. The ab initio model potential method: a common strategy for effective core potential and embedded cluster calculations [M]. LESZCZYNSKI J. Computational Chemistry: Reviews of Current Trends. Singapore:World Scientific, 1999: 55-152. doi: 10.1142/9789812815156_0002http://dx.doi.org/10.1142/9789812815156_0002
GELLĒ A, LEPETIT M B. Fast calculation of the electrostatic potential in ionic crystals by direct summation method [J]. J. Chem. Phys., 2008, 128(24): 244716-1-8. doi: 10.1063/1.2931458http://dx.doi.org/10.1063/1.2931458
ROOS B O, TAYLOR P R, SIGBAHN P E M. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach [J]. Chem. Phys., 1980, 48(2): 157-173. doi: 10.1016/0301-0104(80)80045-0http://dx.doi.org/10.1016/0301-0104(80)80045-0
SIEGBAHN P, HEIBERG A, ROOS B, et al. A comparison of the super-CI and the Newton-Raphson scheme in the complete active space SCF method [J]. Phys. Scr., 1980, 21(3-4): 323-327. doi: 10.1088/0031-8949/21/3-4/014http://dx.doi.org/10.1088/0031-8949/21/3-4/014
SIEGBAHN P E M, ALMLÖF J, HEIBERG A, et al. The complete active space SCF (CASSCF) method in a Newton‑Raphson formulation with application to the HNO molecule [J]. J. Chem. Phys., 1981, 74(4): 2384-2396. doi: 10.1063/1.441359http://dx.doi.org/10.1063/1.441359
ANDERSSON K, MALMQVIST P A, ROOS B O, et al. Second-order perturbation theory with a CASSCF reference function [J]. J. Phys. Chem., 1990, 94(14): 5483-5488. doi: 10.1021/j100377a012http://dx.doi.org/10.1021/j100377a012
ANDERSSON K, MALMQVIST P Å, ROOS B O. Second‐order perturbation theory with a complete active space self‐consistent field reference function [J]. J. Chem. Phys., 1992, 96(2): 1218-1226. doi: 10.1063/1.462209http://dx.doi.org/10.1063/1.462209
ZAITSEVSKII A, MALRIEU J P. Multi-partitioning quasidegenerate perturbation theory. A new approach to multireference Møller-Plesset perturbation theory [J]. Chem. Phys. Lett., 1995, 233(5-6): 597-604. doi: 10.1016/0009-2614(94)01503-nhttp://dx.doi.org/10.1016/0009-2614(94)01503-n
FINLEY J, MALMQVIST P Å, ROOS B O, et al. The multi-state CASPT2 method [J]. Chem. Phys. Lett., 1998, 288(2-4): 299-306. doi: 10.1016/s0009-2614(98)00252-8http://dx.doi.org/10.1016/s0009-2614(98)00252-8
MALMQVIST P Å, ROOS B O, SCHIMMELPFENNIG B. The restricted active space (RAS) state interaction approach with spin‑orbit coupling [J]. Chem. Phys. Lett., 2002, 357(3-4): 230-240. doi: 10.1016/s0009-2614(02)00498-0http://dx.doi.org/10.1016/s0009-2614(02)00498-0
PAULOVIČ J, NAKAJIMA T, HIRAO K, et al. Relativistic and correlated calculations on the ground and excited states of ThO [J]. J. Chem. Phys., 2003, 119(2): 798-805. doi: 10.1063/1.1578053http://dx.doi.org/10.1063/1.1578053
NING L X, CHENG W P, ZHOU C C, et al. Energetic, optical, and electronic properties of intrinsic electron-trapping defects in YAlO3: a hybrid DFT study [J]. J. Phys. Chem. C, 2014, 118(34): 19940-19947. doi: 10.1021/jp5050404http://dx.doi.org/10.1021/jp5050404
WANG Z Z, SONG Z, NING L X, et al. Enhanced yellow persistent luminescence in Sr3SiO5∶Eu2+ through Ge incorporation [J]. Inorg. Chem., 2019, 58(13): 8694-8701. doi: 10.1021/acs.inorgchem.9b01020http://dx.doi.org/10.1021/acs.inorgchem.9b01020
WANG Z Z, SONG Z, NING L X, et al. Sunlight-activated yellow long persistent luminescence from Nb-doped Sr3SiO5∶ Eu2+ for warm-color mark applications [J]. J. Mater. Chem. C, 2020, 8(3): 1143-1150. doi: 10.1039/c9tc05880jhttp://dx.doi.org/10.1039/c9tc05880j
WEN J, YEUNG Y Y, NING L X, et al. Effects of vacancies on valence stabilities of europium ions in β-Ca2SiO4∶Eu phosphors [J]. J. Lumin., 2016, 178: 121-127. doi: 10.1016/j.jlumin.2016.05.047http://dx.doi.org/10.1016/j.jlumin.2016.05.047
HUANG Y C, WANG C, CHEN X, et al. First-principles study on intrinsic defects of SnSe [J]. RSC Adv., 2017, 7(44): 27612-27618. doi: 10.1039/c7ra03367bhttp://dx.doi.org/10.1039/c7ra03367b
WEN J, GUO Z D, GUO H, et al. Thermodynamic stabilities, electronic properties, and optical transitions of intrinsic defects and lanthanide ions (Ce3+, Eu2+, and Eu3+) in Li2SrSiO4 [J]. Inorg. Chem., 2018, 57(10): 6142-6151. doi: 10.1021/acs.inorgchem.8b00752http://dx.doi.org/10.1021/acs.inorgchem.8b00752
QIAO J W, NING L X, MOLOKEEV M S, et al. Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence [J]. J. Am. Chem. Soc., 2018, 140(30): 9730-9736. doi: 10.1021/jacs.8b06021http://dx.doi.org/10.1021/jacs.8b06021
HUANG X X, QIAO Z, WEN J, et al. Intrinsic point defects and dopants Ce3+ in SrLiAl3N4: thermodynamic and spectral properties from first principles [J]. J. Phys. Chem. C, 2020, 124(24): 13400-13408. doi: 10.1021/acs.jpcc.0c04052http://dx.doi.org/10.1021/acs.jpcc.0c04052
WEN J, WANG Y, JIANG G S, et al. First-principles study on self-activated luminescence and 4f→5d transitions of Ce3+ in M5(PO4)3X (M = Sr, Ba; X = Cl, Br) [J]. Inorg. Chem., 2020, 59(7): 5170-5181. doi: 10.1021/acs.inorgchem.0c00406http://dx.doi.org/10.1021/acs.inorgchem.0c00406
ZHANG S Y, SONG Z, WANG S X, et al. Red persistent and photostimulable phosphor SrLiAl3N4∶Eu2+ [J]. J. Mater. Chem. C, 2020, 8(14): 4956-4964. doi: 10.1039/d0tc00277ahttp://dx.doi.org/10.1039/d0tc00277a
WU C Q, ZHANG J C, FENG P F, et al. Blue photoluminescence and long lasting phosphorescence properties of a novel chloride phosphate phosphor: Sr5(PO4)3Cl∶Eu2+ [J]. J. Lumin., 2014, 147: 229-234. doi: 10.1016/j.jlumin.2013.11.055http://dx.doi.org/10.1016/j.jlumin.2013.11.055
JU G F, HU Y H, CHEN L, et al. Persistent luminescence and its mechanism of Ba5(PO4)3Cl∶Ce3+, Eu2+ [J]. J. Appl. Phys., 2012, 111(11): 113508. doi: 10.1063/1.4723646http://dx.doi.org/10.1063/1.4723646
ZHOU L, LIANG H B, TANNER P A, et al. Luminescence, cathodoluminescence and Ce3+→Eu2+ energy transfer and emission enhancement in the Sr5(PO4)3Cl∶Ce3+, Eu2+ phosphor [J]. J. Mater. Chem. C, 2013, 1(43): 7155-7165. doi: 10.1039/c3tc31406ehttp://dx.doi.org/10.1039/c3tc31406e
ZHANG J, ZHANG T T, QIU Z X, et al. Fine-tunable self-activated luminescence in apatite-type (Ba, Sr)5(PO4)3Br and the defect process [J]. Inorg. Chem., 2018, 57(19): 12354-12363. doi: 10.1021/acs.inorgchem.8b02105http://dx.doi.org/10.1021/acs.inorgchem.8b02105
NING L X, WU C B, LI L L, et al. First-principles study on structural properties and 4f→5d transitions of locally charge-compensated Ce3+ in CaF2 [J]. J. Phys. Chem. C, 2012, 116(34): 18419-18426. doi: 10.1021/jp305593hhttp://dx.doi.org/10.1021/jp305593h
NING L X, WANG Z C, WANG Y F, et al. First-principles study on electronic properties and optical spectra of Ce-doped La2CaB10O19 crystal [J]. J. Phys. Chem. C, 2013, 117(29): 15241-15246. doi: 10.1021/jp402706xhttp://dx.doi.org/10.1021/jp402706x
NING L X, WANG Y F, WANG Z C, et al. First-principles study on site preference and 4f→ 5d transitions of Ce3+ in Sr3AlO4F [J]. J. Phys. Chem. A, 2014, 118(6): 986-992. doi: 10.1021/jp410542yhttp://dx.doi.org/10.1021/jp410542y
NING L X, HUANG X X, SUN J C, et al. Effects of Si codoping on optical properties of Ce-doped Ca6BaP4O17: insights from first-principles calculations [J]. J. Phys. Chem. C, 2016, 120(7): 3999-4006. doi: 10.1021/acs.jpcc.5b11659http://dx.doi.org/10.1021/acs.jpcc.5b11659
LIN L T, HUANG X X, SHI R, et al. Luminescence properties and site occupancy of Ce3+ in Ba2SiO4: a combined experimental and ab initio study [J]. RSC Adv., 2017, 7(41): 25685-25693. doi: 10.1039/c7ra04145dhttp://dx.doi.org/10.1039/c7ra04145d
NING L X, ZHOU C C, CHEN W P, et al. Electronic properties of Ce3+-doped Sr3Al2O5Cl2: a combined spectroscopic and theoretical study [J]. J. Phys. Chem. C, 2015, 119(12): 6785-6792. doi: 10.1021/jp512331bhttp://dx.doi.org/10.1021/jp512331b
HUANG X X, SUN J C, WEN J, et al. Site occupation and spectroscopic properties of Ce3+ in Y3Si5N9O from first-principles calculations [J]. J. Alloys Compd., 2018, 730: 57-61. doi: 10.1016/j.jallcom.2017.09.287http://dx.doi.org/10.1016/j.jallcom.2017.09.287
WEN J, YEUNG Y Y, NING L X, et al. Thermal stabilities, electronic structures and optical properties of intrinsic defects and dopant cerium in Ca4F2Si2O7 [J]. J. Alloys Compd., 2017, 713: 28-37. doi: 10.1016/j.jallcom.2017.04.077http://dx.doi.org/10.1016/j.jallcom.2017.04.077
NING L X, HUANG X X, HUANG Y C, et al. Origin of the green persistent luminescence of Eu-doped SrAl2O4 from a multiconfigurational ab initio study of 4f7→ 4f65d1 transitions [J]. J. Mater. Chem. C, 2018, 6(25): 6637-6640. doi: 10.1039/c8tc02141dhttp://dx.doi.org/10.1039/c8tc02141d
HUANG X X, QIAO Z, QIU Z X, et al. Site occupation and spectral assignment in Eu2+-activated β-Ca3(PO4)2-type phosphors: insights from first-principles calculations [J]. Inorg. Chem., 2020, 59(22): 16760-16768. doi: 10.1021/acs.inorgchem.0c02849http://dx.doi.org/10.1021/acs.inorgchem.0c02849
SHI R, HUANG X X, LIU T T, et al. Optical properties of Ce-doped Li4SrCa(SiO4)2: a combined experimental and theoretical study [J]. Inorg. Chem., 2018, 57(3): 1116-1124. doi: 10.1021/acs.inorgchem.7b02561http://dx.doi.org/10.1021/acs.inorgchem.7b02561
HUANG X X, ZHANG D, LI Z, et al. Structural origin of blue luminescence in Ce-doped Ba2Y5B5O17 and Ba3Y2B6O15 with multiple cation sites and occupational disorder [J]. J. Alloys Compd., 2019, 797: 890-895. doi: 10.1016/j.jallcom.2019.05.212http://dx.doi.org/10.1016/j.jallcom.2019.05.212
BOTTERMAN J, JOOS J J, SMET P F. Trapping and detrapping in SrAl2O4∶Eu, Dy persistent phosphors: influence of excitation wavelength and temperature [J]. Phys. Rev. B, 2014, 90(8): 085147-1-15. doi: 10.1103/physrevb.90.085147http://dx.doi.org/10.1103/physrevb.90.085147
NAZAROV M, BRIK M G, SPASSKY D, et al. Crystal field splitting of 5d states and luminescence mechanism in SrAl2O4∶Eu2+ phosphor [J]. J. Lumin., 2017, 182: 79-86. doi: 10.1016/j.jlumin.2016.10.015http://dx.doi.org/10.1016/j.jlumin.2016.10.015
SHI R, QI M M, NING L X, et al. Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4 [J]. J. Phys. Chem. C, 2015, 119(33): 19326-19332. doi: 10.1021/acs.jpcc.5b04803http://dx.doi.org/10.1021/acs.jpcc.5b04803
NING L X, JIANG Y, XIA S D, et al. Theoretical analysis and intensity calculation for the f→d absorption spectrum of U3+ in the LiY F4 crystal [J]. J. Phys.: Condens. Matter, 2003, 15(43): 7337-7350. doi: 10.1088/0953-8984/15/43/016http://dx.doi.org/10.1088/0953-8984/15/43/016
JI H P, HUANG Z H, XIA Z G, et al. Discovery of new solid solution phosphors via cation substitution-dependent phase transition in M3(PO4)2∶Eu2+ (M = Ca/Sr/Ba) quasi-binary sets [J]. J. Phys. Chem. C, 2015, 119(4): 2038-2045. doi: 10.1021/jp509743rhttp://dx.doi.org/10.1021/jp509743r
LENG Z H, LI R F, LI L P, et al. Preferential neighboring substitution-triggered full visible spectrum emission in single-phased Ca10.5-xMgx(PO4)7∶Eu2+ phosphors for high color-rendering white LEDs [J]. ACS Appl. Mater. Interfaces, 2018, 10(39): 33322-33334. doi: 10.1021/acsami.8b11879http://dx.doi.org/10.1021/acsami.8b11879
RUAN F P, DENG D G, WU M, et al. Multichannel luminescence of Eu2+/Eu3+ co-activated Ca9Mg1.5(PO4)7 phosphors for self-referencing optical thermometry [J]. J. Lumin., 2019, 213: 117-126. doi: 10.1016/j.jlumin.2019.04.047http://dx.doi.org/10.1016/j.jlumin.2019.04.047
CHEN M Y, XIA Z G, MOLOKEEV M S, et al. Probing Eu2+ luminescence from different crystallographic sites in Ca10M (PO4)7∶Eu2+ (M = Li, Na, and K) with β-Ca3(PO4)2-type structure [J]. Chem. Mater., 2017, 29(17): 7563-7570. doi: 10.1021/acs.chemmater.7b02724http://dx.doi.org/10.1021/acs.chemmater.7b02724
XIE M B, WANG J, RUAN W K. Multi-site tunable emission of Eu2+ ions in Ca10Na(PO4)7 host [J]. J. Lumin., 2020, 218: 116848. doi: 10.1016/j.jlumin.2019.116848http://dx.doi.org/10.1016/j.jlumin.2019.116848
0
浏览量
412
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构