浏览全部资源
扫码关注微信
1.五邑大学 应用物理与材料学院, 广东 江门 529020
2.广东省科学院 中乌焊接研究所, 广东 广州 510651
[ "赵晶晶(1997-),女,山西晋中人,硕士研究生,2020年于大同大学获得学士学位,主要从事超宽禁带半导体材料的研究。E‐mail: 1509518959@qq.com" ]
[ "王海燕(1992-),女,广东广州人,博士,工程师,硕士生导师,2018年于华南理工大学获得博士学位,主要从事氮化物及氧化物半导体薄膜生长及器件制备的研究。E‐mail:wang_haiyan09@163. com" ]
[ "杨为家(1980-),男,广西桂平人,博士,副教授,硕士生导师,2016年于华南理工大学获得博士学位,主要从事ⅢⅤ族、氧化物薄膜材料与器件的研究。E‐mail:yangweijia5377@126. com" ]
纸质出版日期:2022-08-05,
收稿日期:2022-04-11,
修回日期:2022-04-21,
移动端阅览
赵晶晶,刘丽华,秦彬皓等.高真空磁控溅射温度对Ga2O3微观结构及光学性能的影响[J].发光学报,2022,43(08):1236-1243.
ZHAO Jing-jing,LIU Li-hua,QIN Bin-hao,et al.Effect of Sputtering Temperature on Microstructural and Optical Properties of Gallium Oxide Deposited by High-vacuum Magnetron Sputtering[J].Chinese Journal of Luminescence,2022,43(08):1236-1243.
赵晶晶,刘丽华,秦彬皓等.高真空磁控溅射温度对Ga2O3微观结构及光学性能的影响[J].发光学报,2022,43(08):1236-1243. DOI: 10.37188/CJL.20220131.
ZHAO Jing-jing,LIU Li-hua,QIN Bin-hao,et al.Effect of Sputtering Temperature on Microstructural and Optical Properties of Gallium Oxide Deposited by High-vacuum Magnetron Sputtering[J].Chinese Journal of Luminescence,2022,43(08):1236-1243. DOI: 10.37188/CJL.20220131.
采用高真空射频磁控溅射法在硅Si(111) 衬底上沉积氧化镓(β⁃Ga
2
O
3
),开展了溅射温度对Ga
2
O
3
微观结构及光学性能影响的研究,利用 X 射线衍射、扫描电子显微镜、荧光光谱仪等测试手段对Ga
2
O
3
晶体结构、表面形貌及光学性能进行表征分析。实验结果表明,在高纯Ar气环境下,所沉积的Ga
2
O
3
形貌差异与不同溅射温度下Ga
2
O
3
生长机理有关,当溅射温度达到300 ℃时,Ga
2
O
3
发生热分解,形成金属Ga团簇;当溅射温度达到400 ℃时,金属Ga团簇作为催化剂触发Ga
2
O
3
纳米线的自催化生长。光致发光(PL)光谱中,Ga
2
O
3
样品在300~700 nm波长范围内显示出4个位于紫光、蓝光、绿光区域的发射峰,在溅射温度为400 ℃下形成的Ga
2
O
3
纳米线发射峰显著增强,并且发生轻微的蓝移,纳米结构中较大的比表面积以及量子尺寸效应对Ga
2
O
3
的荧光发射(PL)性能具有重要影响。拉曼光谱(Raman)显示,随着溅射温度升高,Ga
2
O
3
晶体质量有所提高;在溅射温度为400 ℃下形成的纳米线出现新的拉曼振动模式,并且发生18 cm
-1
的蓝移。
Gallium oxide(β-Ga
2
O
3
) was deposited on silicon (111) substrate by RF magnetron sputtering, and the effect of substrate temperature on the microstructure and optical property of the Ga
2
O
3
was studied. The crystal structure, surface morphology and optical propery of as-deposited Ga
2
O
3
were characterized by X-ray diffraction, scanning electron microscopy, fluorescence spectrometer,
etc
. The experimental results show that in a high-purity Ar atmosphere, the surface morphology of as-deposited Ga
2
O
3
is related to its growth mechanism at different sputtering temperatures. When the sputtering temperature is 300 ℃, Ga
2
O
3
undergoes thermal decomposition to form clusters of metal Ga; when the sputtering temperature reaches 400 ℃, the metal Ga clusters act as the catalyst to trigger the self-catalytic growth of Ga
2
O
3
nanowires. According to the photoluminescence(PL) spectra, the Ga
2
O
3
samples show four emission peaks located in the ultraviolet, blue and green light regions in the spectral range of 300 nm to 700 nm. The emission peaks of the Ga
2
O
3
nanowires obtained at the sputtering temperature of 400 ℃ are significantly enhanced and exhibit slight blueshifts. It is revealed that the larger specific surface area and the quantum size effects of nanowires have important effects on the PL performance of Ga
2
O
3
. Raman spectroscopy(Raman) characterizations suggest that the crystalline quality of as-grown Ga
2
O
3
is improved with the increasing sputtering temperature. New Raman vibration modes appear in the spectra detected from the Ga
2
O
3
nanowires grown at 400 ℃, and the Raman peak shows a blueshift of 18 cm
-1
.
射频磁控溅射Ga2O3结构性能光学性能
RF magnetron sputteringgallium oxidestructural propertiesoptical properties
KUMAR S, SINGH R. Nanofunctional gallium oxide(Ga2O3) nanowires/nanostructures and their applications in nanodevices [J]. Phys. Status Sol.-Rapid Res. Lett., 2013, 7(10): 781-792. doi: 10.1002/pssr.201307253http://dx.doi.org/10.1002/pssr.201307253
XU J J, ZHENG W, HUANG F. Gallium oxide solar-blind ultraviolet photodetectors: a review [J]. J. Mater. Chem. C, 2019, 7(29): 8753-8770. doi: 10.1039/c9tc02055ahttp://dx.doi.org/10.1039/c9tc02055a
ZHANG F B, SAITO K, TANAKA T, et al. Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition [J]. J. Crystal Growth, 2014, 387: 96-100. doi: 10.1016/j.jcrysgro.2013.11.022http://dx.doi.org/10.1016/j.jcrysgro.2013.11.022
LV Y, MA J, MI W, et al. Characterization of β-Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique [J]. Vacuum, 2012, 86(12): 1850-1854. doi: 10.1016/j.vacuum.2012.04.019http://dx.doi.org/10.1016/j.vacuum.2012.04.019
HU D Q, WANG Y, ZHUANG S W, et al. Surface morphology evolution and optoelectronic properties of heteroepitaxial Si-doped β-Ga2O3 thin films grown by metal-organic chemical vapor deposition [J]. Ceram. Int., 2018, 44(3): 3122-3127. doi: 10.1016/j.ceramint.2017.11.079http://dx.doi.org/10.1016/j.ceramint.2017.11.079
SASAKI K, HIGASHIWAKI M, KURAMATA A, et al. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy [J]. J. Crystal Growth, 2014, 392: 30-33. doi: 10.1016/j.jcrysgro.2014.02.002http://dx.doi.org/10.1016/j.jcrysgro.2014.02.002
LIU X Z, GUO P, SHENG T, et al. β-Ga2O3 thin films on sapphire pre-seeded by homo-self-templated buffer layer for solar-blind UV photodetector [J]. Opt. Mater., 2016, 51: 203-207. doi: 10.1016/j.optmat.2015.11.023http://dx.doi.org/10.1016/j.optmat.2015.11.023
VU T K O, LEE D U, KIM E K. The effect of oxygen partial pressure on band gap modulation of Ga2O3 grown by pulsed laser deposition [J]. J. Alloys Compd., 2019, 806: 874-880. doi: 10.1016/j.jallcom.2019.07.326http://dx.doi.org/10.1016/j.jallcom.2019.07.326
ARORA K, GOEL N, KUMAR M, et al. Ultrahigh performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective Si substrate using high-temperature seed layer [J]. ACS Photonics, 2018, 5(6): 2391-2401. doi: 10.1021/acsphotonics.8b00174http://dx.doi.org/10.1021/acsphotonics.8b00174
MOBTAKERI S, AKALTUN Y, ÖZER A, et al. Gallium oxide films deposition by RF magnetron sputtering; a detailed analysis on the effects of deposition pressure and sputtering power and annealing [J]. Ceram. Int., 2021, 47(2): 1721-1727. doi: 10.1016/j.ceramint.2020.08.289http://dx.doi.org/10.1016/j.ceramint.2020.08.289
MENG Y J, GAO Y Q, CHEN K Y, et al. Annealing induced phase transition and optical properties of Ga2O3 thin films synthesized by sputtering technique [J]. Optik, 2021, 244: 167515. doi: 10.1016/j.ijleo.2021.167515http://dx.doi.org/10.1016/j.ijleo.2021.167515
WANG J, YE L J, WANG X, et al. High transmittance β-Ga2O3 thin films deposited by magnetron sputtering and post-annealing for solar-blind ultraviolet photodetector [J]. J. Alloys Compd., 2019, 803: 9-15. doi: 10.1016/j.jallcom.2019.06.224http://dx.doi.org/10.1016/j.jallcom.2019.06.224
KUMAR S S, RUBIO E J, NOOR-A-ALAM M, et al. Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films [J]. J. Phys. Chem. C, 2013, 117(8): 4194-4200. doi: 10.1021/jp311300ehttp://dx.doi.org/10.1021/jp311300e
ALHALAILI B, BUNK R, VIDU R, et al. Dynamics contributions to the growth mechanism of Ga2O3 thin film and NWs enabled by Ag catalyst [J]. Nanomaterials, 2019, 9(9): 1272-1-13. doi: 10.3390/nano9091272http://dx.doi.org/10.3390/nano9091272
PARK S Y, LEE S Y, SEO S H, et al. Self-catalytic growth of β-Ga2O3 nanowires deposited by radio-frequency magnetron sputtering [J]. Appl. Phys. Express, 2013, 6(10): 105001-1-4. doi: 10.7567/apex.6.105001http://dx.doi.org/10.7567/apex.6.105001
CHOI K H, KANG H C. Structural and optical evolution of Ga2O3/glass thin films deposited by radio frequency magnetron sputtering [J]. Mater. Lett., 2014, 123: 160-164. doi: 10.1016/j.matlet.2014.03.038http://dx.doi.org/10.1016/j.matlet.2014.03.038
LEE S Y, KANG H C. Synthesis and characterization of β-Ga2O3 nanowires on amorphous substrates using radio-frequency powder sputtering [J]. J. Crystal Growth, 2015, 412: 25-30. doi: 10.1016/j.jcrysgro.2014.11.030http://dx.doi.org/10.1016/j.jcrysgro.2014.11.030
LIANG C H, MENG G W, WANG G Z, et al. Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires [J]. Appl. Phys. Lett., 2001, 78(21): 3202-3204. doi: 10.1063/1.1374498http://dx.doi.org/10.1063/1.1374498
CAO Q, HE L N, FENG X J, et al. Effect of annealing on the structural and optical properties of β-Ga2O3 films prepared on gadolinium gallium garnet (110) by MOCVD [J]. Ceram. Int., 2018, 44(1): 830-835. doi: 10.1016/j.ceramint.2017.10.006http://dx.doi.org/10.1016/j.ceramint.2017.10.006
XIANG J, LI S L, SUN Z B, et al. Efficient white light emission from Ga/Ga2O3 hybrid nanoparticles [J]. Adv. Opt. Mater., 2021, 9(21): 2100675-1-8. doi: 10.1002/adom.202100675http://dx.doi.org/10.1002/adom.202100675
HU D Q, ZHUANG S W, DONG X, et al. Growth and properties of one-dimensional β-Ga2O3 nanostructures on c-plane sapphire substrates [J]. Mater. Sci. Semicond. Process., 2018, 75: 31-35. doi: 10.1016/j.mssp.2017.11.018http://dx.doi.org/10.1016/j.mssp.2017.11.018
BINET L, GOURIER D. Origin of the blue luminescence of β-Ga2O3 [J]. J. Phys. Chem. Solids, 1998, 59(8): 1241-1249. doi: 10.1016/s0022-3697(98)00047-xhttp://dx.doi.org/10.1016/s0022-3697(98)00047-x
WU X C, SONG W H, HUANG W D, et al. Crystalline gallium oxide nanowires: intensive blue light emitters [J]. Chem. Phys. Lett., 2000, 328(1-2): 5-9. doi: 10.1016/s0009-2614(00)00899-xhttp://dx.doi.org/10.1016/s0009-2614(00)00899-x
WANG Y S, DICKENS P T, VARLEY J B, et al. Incident wavelength and polarization dependence of spectral shifts in β-Ga2O3 UV photoluminescence [J]. Sci. Rep., 2018, 8(1): 18075-1-7. doi: 10.1038/s41598-018-36676-7http://dx.doi.org/10.1038/s41598-018-36676-7
马征征, 董鑫, 庄仕伟, 等. 退火对Ga2O3薄膜特性的影响 [J]. 发光学报, 2017, 38(5): 606-610. doi: 10.3788/fgxb20173805.0606http://dx.doi.org/10.3788/fgxb20173805.0606
MA Z Z, DONG X, ZHUANG S W, et al. Effect of annealing on Ga2O3 film [J]. Chin. J. Lumin., 2017, 38(5): 606-610. (in Chinese). doi: 10.3788/fgxb20173805.0606http://dx.doi.org/10.3788/fgxb20173805.0606
ZALFANI M, VAN DER SCHUEREN B, MAHDOUANI M, et al. ZnO quantum dots decorated 3DOM TiO2 nanocomposites: symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants [J]. Appl. Catal. B: Environ., 2016, 199: 187-198. doi: 10.1016/j.apcatb.2016.06.016http://dx.doi.org/10.1016/j.apcatb.2016.06.016
KUMAR M, KUMAR V, SINGH R. Diameter tuning of β-Ga2O3 nanowires using chemical vapor deposition technique [J]. Nanoscale Res. Lett., 2017, 12(1): 184-1-10. doi: 10.1186/s11671-017-1915-1http://dx.doi.org/10.1186/s11671-017-1915-1
马海林, 李艳. 催化剂对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响 [J]. 发光学报, 2013, 34(6): 716-720. doi: 10.3788/fgxb20133406.0716http://dx.doi.org/10.3788/fgxb20133406.0716
MA H L, LI Y. Influence of catalyst on the structure and photoluminescence of β-Ga2O3 nano-material by thermal evaporation [J]. Chin. J. Lumin., 2013, 34(6): 716-720. (in Chinese). doi: 10.3788/fgxb20133406.0716http://dx.doi.org/10.3788/fgxb20133406.0716
DEAK P, HO Q D, SEEMANN F, et al. Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier trapping in β-Ga2O3 [J]. Phys. Rev. B, 2017, 95(7): 075208-1-11.
HO Q D, FRAUENHEIM T, DEAK P. Origin of photoluminescence in β-Ga2O3 [J]. Phys. Rev. B, 2018, 97(11): 115163. doi: 10.1103/physrevb.97.115163http://dx.doi.org/10.1103/physrevb.97.115163
VÍLLORA E G, YAMAGA M, INOUE T, et al. Optical spectroscopy study on β-Ga2O3 [J]. Jpn. J. Appl. Phys., 2002, 41(6A): L622-L625. doi: 10.1143/jjap.41.l622http://dx.doi.org/10.1143/jjap.41.l622
ONUMA T, FUJIOKA S, YAMAGUCHI T, et al. Polarized Raman spectra in β-Ga2O3 single crystals [J]. J. Crystal Growth, 2014, 401: 330-333. doi: 10.1016/j.jcrysgro.2013.12.061http://dx.doi.org/10.1016/j.jcrysgro.2013.12.061
COOKE J, GHADBEIGI L, SUN R J, et al. Synthesis and characterization of large-area nanometer‐thin β-Ga2O3 films from oxide printing of liquid metal gallium [J]. Phys. Status Sol. (A)-Appl. Mater. Sci., 2020, 217(10): 1901007. doi: 10.1002/pssa.201901007http://dx.doi.org/10.1002/pssa.201901007
LIU B, GU M, LIU X L. Lattice dynamical, dielectric, and thermodynamic properties of β-Ga2O3 from first principles [J]. Appl. Phys. Lett., 2007, 91(17): 172102-1-3. doi: 10.1063/1.2800792http://dx.doi.org/10.1063/1.2800792
RAO R, RAO A M, XU B, et al. Blueshifted Raman scattering and its correlation with the [110] growth direction in gallium oxide nanowires [J]. J. Appl. Phys., 2005, 98(9): 094312-1-5. doi: 10.1063/1.2128044http://dx.doi.org/10.1063/1.2128044
LAN Z H, LIANG C H, HSU C W, et al. Nanohomojunction (GaN) and nanoheterojunction (InN) nanorods on one-dimensional GaN nanowire substrates [J]. Adv. Funct. Mater., 2004, 14(3): 233-237. doi: 10.1002/adfm.200304403http://dx.doi.org/10.1002/adfm.200304403
GONZALO A, NOGALES E, LORENZ K, et al. Raman and cathodoluminescence analysis of transition metal ion implanted Ga2O3 nanowires [J]. J. Lumin., 2017, 191: 56-60. doi: 10.1016/j.jlumin.2017.01.042http://dx.doi.org/10.1016/j.jlumin.2017.01.042
ARORA A K, RAVINDRAN T R, REDDY G L N, et al. Nature of confinement of phonons in nanocrystalline CVD diamond [J]. Diamond Relat. Mater., 2001, 10(8): 1477-1485. doi: 10.1016/s0925-9635(00)00616-6http://dx.doi.org/10.1016/s0925-9635(00)00616-6
0
浏览量
289
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构