浏览全部资源
扫码关注微信
华侨大学 发光材料与信息显示研究院, 材料科学与工程学院, 厦门市光电材料及其先进制造重点实验室, 福建 厦门 361021
[ "吕天帅(1989-),男,贵州安顺人,博士,副教授,2020年于荷兰代尔夫特理工大学获得博士学位,主要从事长余辉发光与光存储材料方面的理论与基础运用研究。 E-mail: lv_tianshuai@126.com" ]
纸质出版日期:2022-09-05,
收稿日期:2022-04-05,
修回日期:2022-04-20,
移动端阅览
吕天帅.如何利用真空标度(VRBE)能级图理性设计与探索长余辉发光与光存储材料[J].发光学报,2022,43(09):1413-1427.
LYU Tian-shuai.How to Rational Design and Explore Afterglow and Storage Phosphors by Using Vacuum Referred Binding Energy(VRBE) Diagram[J].Chinese Journal of Luminescence,2022,43(09):1413-1427.
吕天帅.如何利用真空标度(VRBE)能级图理性设计与探索长余辉发光与光存储材料[J].发光学报,2022,43(09):1413-1427. DOI: 10.37188/CJL.20220123.
LYU Tian-shuai.How to Rational Design and Explore Afterglow and Storage Phosphors by Using Vacuum Referred Binding Energy(VRBE) Diagram[J].Chinese Journal of Luminescence,2022,43(09):1413-1427. DOI: 10.37188/CJL.20220123.
简要介绍了无机长余辉发光材料与光存储材料的概念及其起源和研究现状。简述了三种经典商业长余辉发光与光存储材料。基于这三种商业发光材料,分析了理性设计这类材料存在的问题,并介绍如何基于真空标度能级图(Vacuum referred binding energy(VRBE) diagram)来设计长余辉发光与光存储材料的策略。首先,介绍了真空标度能级图的定义和构建其所需要的模型参数和实验光谱数据。在稀土离子掺杂无机化合物真空标度能级图的基础上,阐述二价和三价铋离子的真空标度能级位置。其次,基于YPO
4
模型材料的真空标度能级图,介绍电子释放模型和空穴释放模型的定义和区别。最后,结合稀土离子和铋离子掺杂
RE
PO
4
(
RE
=La,Y,Lu)及NaYGeO
4
家族化合物的真空标度能级图,简要论述如何设计电子与空穴陷阱中心以及如何调控电子或空穴陷阱的深度。真空标度能级图对讨论载流子的捕获与释放以及理性设计与探索无机长余辉发光与光存储材料具有一定的指导意义。
The definition, history, and developments of inorganic afterglow and storage phosphors will be shortly introduced. Three state-of-the-art phosphors of SrAl
2
O
4
∶Eu
2+
,Dy
3+
, BaFBr(Ⅰ)∶Eu
2+
, and Al
2
O
3
∶C chip will be first introduced. Based on the above three state-of-the-art phosphors, the issues to the rational design of afterglow and storage phosphors will be shortly analyzed. This work will demonstrate a strategy that how to rational design of inorganic afterglow and storage phosphors based on a so-called vacuum referred binding energy(VRBE) diagram. Firstly, we will shortly introduce what is the vacuum referred binding energy diagram and how it can be constructed by combining the VRBE model required parameters and experimental spectroscopy data. In a VRBE diagram for an inorganic compound including the level locations of lanthanides, the VRBE in the ground or excited states of Bi
2+
and Bi
3+
will be discussed and added. Secondly, based on the VRBE diagram of the model YPO
4
compound, the definition and difference of an electron release model and a hole release model will be shortly introduced. Finally, how to rational design of electron or hole capturing centres and how to tailor their trapping depths will be demonstrated by utilizing the lanthanides and bismuth doped
RE
PO
4
(
RE
=La, Y, Lu) and the NaYGeO
4
family compounds. The constructed VRBE diagrams for different inorganic compounds will help us to identify and discuss charge carrier trapping and release processes, therefore promoting the development of inorganic afterglow and storage phosphors in a design way instead of by a trial-and-error method.
真空标度能级图稀土离子Bi3+Bi2+长余辉发光光存储材料
vacuum referred binding energy(VRBE) diagramlanthanidesBi3+Bi2+afterglow phosphorstorage phosphor
XU J, TANABE S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective [J]. J. Lumin., 2019, 205: 581-620. doi: 10.1016/j.jlumin.2018.09.047http://dx.doi.org/10.1016/j.jlumin.2018.09.047
吕雪杰, 许杰, 林航, 等. Pr3+掺杂红色长余辉发光材料研究进展 [J]. 发光学报, 2022, 43(3): 327-340. doi: 10.37188/cjl.20210414http://dx.doi.org/10.37188/cjl.20210414
LYU X J, XU J, LIN H, et al. Research progress on Pr3+ doped red persistent luminescent materials [J]. Chin. J. Lumin., 2022, 43(3): 327-340. (in Chinese). doi: 10.37188/cjl.20210414http://dx.doi.org/10.37188/cjl.20210414
王洪杰, 韩蒙, 朱重阳, 等. Nb5+、Sm3+共掺杂YTaO4的长余辉发光性质 [J]. 发光学报, 2021, 42(1): 1-9.
WANG H J, HAN M, ZHU C Y, et al. Long-lasting phosphorescence in Nb5+ and Sm3+ codoped YTaO4 [J]. Chin. J. Lumin., 2021, 42(1): 1-9. (in Chinese)
潘梅, 朱诚逸, 王政. 长余辉发光——闪耀人生的那颗夜明珠 [J]. 发光学报, 2020, 41(9): 1087-1092. doi: 10.37188/fgxb20204109.1087http://dx.doi.org/10.37188/fgxb20204109.1087
PAN M, ZHU C Y, WANG Z. Long persistence luminescence: shining pearl of life [J]. Chin. J. Lumin., 2020, 41(9): 1087-1092. (in Chinese). doi: 10.37188/fgxb20204109.1087http://dx.doi.org/10.37188/fgxb20204109.1087
ZHUANG Y X, CHEN D R, CHEN W J, et al. X-ray-charged bright persistent luminescence in NaYF4∶Ln3+@NaYF4 nanoparticles for multidimensional optical information storage [J]. Light: Sci. Appl., 2021, 10(1): 132-1-10. doi: 10.1038/s41377-021-00575-whttp://dx.doi.org/10.1038/s41377-021-00575-w
LYU T, DORENBOS P, LI C H, et al. Unraveling electron liberation from Bi2+ for designing Bi3+-based afterglow phosphor for anti-counterfeiting and flexible X-ray imaging [J]. Chem. Eng. J., 2022, 435: 135038-1-18. doi: 10.1016/j.cej.2022.135038http://dx.doi.org/10.1016/j.cej.2022.135038
LIU Z C, ZHAO L, CHEN W B, et al. Multiple anti-counterfeiting realized in NaBaScSi2O7 with a single activator of Eu2+ [J]. J. Mater. Chem. C, 2018, 6(41): 11137-11143. doi: 10.1039/c8tc04018dhttp://dx.doi.org/10.1039/c8tc04018d
VAN DEN EECKHOUT K, SMET P F, POELMAN D. Persistent luminescence in Eu2+-doped compounds: a review [J]. Materials, 2010, 3(4): 2536-2566. doi: 10.3390/ma3042536http://dx.doi.org/10.3390/ma3042536
LIU S Q, MAO N, SONG Z, et al. UV-red light-chargeable near-infrared-persistent phosphors and their applications [J]. ACS Appl. Mater. Interfaces, 2022, 14(1): 1496-1504. doi: 10.1021/acsami.1c21321http://dx.doi.org/10.1021/acsami.1c21321
KANG C C, LIU R S, CHANG J C, et al. Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S∶Ti, Mg [J]. Chem. Mater., 2003, 15(21): 3966-3968. doi: 10.1021/cm0344212http://dx.doi.org/10.1021/cm0344212
NEWTON Harvey E. A History of Luminescence from the Earliest Times Until 1900 [M]. New York: American Philosophical Society Press, 1957. doi: 10.5962/bhl.title.14249http://dx.doi.org/10.5962/bhl.title.14249
LASTUSAARI M, LAAMANEN T, MALKAMÄKI M, et al. The Bologna Stone: history’s first persistent luminescent material [J]. Eur. J. Mineral., 2012, 24(5): 885-890. doi: 10.1127/0935-1221/2012/0024-2224http://dx.doi.org/10.1127/0935-1221/2012/0024-2224
WIKIPEDIA, FREE ENCYCLOPEDIATHE. Radium Girls [EB/OL]. [2022-08-16]. https://en.wikipedia.org/w/index.php?title=Radium_Girls&oldid=766100626https://en.wikipedia.org/w/index.php?title=Radium_Girls&oldid=766100626. doi: 10.1001/jama.279.7.555-jbk0218-2-1http://dx.doi.org/10.1001/jama.279.7.555-jbk0218-2-1
MATSUZAWA T, AOKI Y, TAKEUCHI N, et al. A new long phosphorescent phosphor with high brightness, SrAl2O4∶ Eu2+, Dy3+ [J]. J. Electrochem. Soc., 1996, 143(8): 2670-2673. doi: 10.1149/1.1837067http://dx.doi.org/10.1149/1.1837067
李杨, 邱建荣. 蓬勃发展的长余辉材料 [J]. 激光与光电子学进展, 2021, 58(15): 1516002-1-10. doi: 10.3788/lop202158.1516002http://dx.doi.org/10.3788/lop202158.1516002
LI Y, QIU J R. Persistently luminescent phosphors [J]. Laser Optoelectron. Prog., 2021, 58(15): 1516002-1-10. (in Chinese). doi: 10.3788/lop202158.1516002http://dx.doi.org/10.3788/lop202158.1516002
SPAETH J M. Recent developments in X-ray storage phosphor materials [J]. Radiat. Meas., 2001, 33(5): 527-532. doi: 10.1016/s1350-4487(01)00050-6http://dx.doi.org/10.1016/s1350-4487(01)00050-6
DOBROWOLSKA A, BOS A J J, DORENBOS P. High charge carrier storage capacity in lithium lutetium silicate doped with cerium and thulium [J]. Phys. Status Solidi(RRL), 2019, 13(3): 1800502-1-4. doi: 10.1002/pssr.201800502http://dx.doi.org/10.1002/pssr.201800502
LYU T S, DORENBOS P. Bi3+ acting both as an electron and as a hole trap in La-, Y-, and LuPO4 [J]. J. Mater. Chem. C, 2018, 6(23): 6240-6249. doi: 10.1039/c8tc01020jhttp://dx.doi.org/10.1039/c8tc01020j
LYU T S, DORENBOS P. Vacuum-referred binding energies of bismuth and lanthanide levels in LiTaO3: towards rational design of afterglow and storage phosphors [J]. Laser Photonics Rev., 2022:2200304-1-14.
DOBROWOLSKA A, BOS A J J, DORENBOS P. Synthesis optimization and charge carrier transfer mechanism in LiLuSiO4∶Ce, Tm storage phosphor [J]. Radiat. Meas., 2019, 127: 106147-1-8. doi: 10.1016/j.radmeas.2019.106147http://dx.doi.org/10.1016/j.radmeas.2019.106147
LEBLANS P, VANDENBROUCKE D, WILLEMS P. Storage phosphors for medical imaging [J]. Materials, 2011, 4(6): 1034-1086. doi: 10.3390/ma4061034http://dx.doi.org/10.3390/ma4061034
LYU T. Rational Design of Afterglow and Storage Phosphors [D]. Delft: Delft University of Technology, 2020.
庄逸熙, 陈敦榕, 解荣军. 面向光学信息存储应用的深陷阱长余辉发光材料 [J]. 激光与光电子学进展, 2021, 58(15): 1516001-1-24. doi: 10.3788/lop202158.1516001http://dx.doi.org/10.3788/lop202158.1516001
ZHUANG Y X, CHEN D R, XIE R J. Persistent luminescent materials with deep traps for optical information storage [J]. Laser Optoelectron. Prog., 2021, 58(15): 1516001-1-24. (in Chinese). doi: 10.3788/lop202158.1516001http://dx.doi.org/10.3788/lop202158.1516001
张聪, 杨迪, 邵康, 等. 热释光谱用于长余辉材料陷阱分布分析的研究进展 [J]. 激光与光电子学进展, 2021, 58(15): 1516006-1-12. doi: 10.3788/lop202158.1516006http://dx.doi.org/10.3788/lop202158.1516006
ZHANG C, YANG D, SHAO K, et al. Progress in thermoluminescence spectroscopy for characterization of trap distribution in persistent luminescence materials [J]. Laser Optoelectron. Prog., 2021, 58(15): 1516006-1-12. (in Chinese). doi: 10.3788/lop202158.1516006http://dx.doi.org/10.3788/lop202158.1516006
LUCKEY G W. Apparatus and method for producing images corresponding to patterns of high energy radiation: US, 3859527 [P]. 1975-01-01.
STEVELS A L N, PINGAULT F. BaFCl∶Eu2+, a new phosphor for X-ray-intensifying screens [J]. Philips Res. Rep., 1975, 30(5): 277-290.
KOTERA N, EGUCHI S, MIYAHARA J, et al. Method and apparatus for recording and reproducing a radiation image: US, 4236078 [P]. 1980-11-25.
SHRESTHA N, YUKIHARA E G, CUSUMANO D, et al. Al2O3∶C and Al2O3∶C,Mg optically stimulated luminescence 2D dosimetry applied to magnetic resonance guided radiotherapy [J]. Radiat. Meas., 2020, 138: 106439-1-10. doi: 10.1016/j.radmeas.2020.106439http://dx.doi.org/10.1016/j.radmeas.2020.106439
LUO H D, DORENBOS P. The dual role of Cr3+ in trapping holes and electrons in lanthanide co-doped GdAlO3 and LaAlO3 [J]. J. Mater. Chem. C, 2018, 6(18): 4977-4984. doi: 10.1039/c8tc01100ahttp://dx.doi.org/10.1039/c8tc01100a
LUO H D, BOS A J J, DORENBOS P. Charge carrier trapping processes in RE2O2S (RE=La, Gd, Y, and Lu) [J]. J. Phys. Chem. C, 2017, 121(16): 8760-8769. doi: 10.1021/acs.jpcc.7b01577http://dx.doi.org/10.1021/acs.jpcc.7b01577
LIU Y, ZHANG H, LIU Z C, et al. Identifying and utilizing optical properties in the CaSrNb2O7∶Pr3+ phosphor at low temperature [J]. J. Mater. Chem. C, 2022, 10(9): 3547-3552. doi: 10.1039/d1tc05798ghttp://dx.doi.org/10.1039/d1tc05798g
ZHU X D, WANG T, LIU Z C, et al. A temporal and space anti-counterfeiting based on the four-modal luminescent Ba2Zr2Si3O12 phosphors [J]. Inorg. Chem., 2022, 61(7): 3223-3229. doi: 10.1021/acs.inorgchem.1c03712http://dx.doi.org/10.1021/acs.inorgchem.1c03712
LYU T S, DORENBOS P. Charge carrier trapping processes in lanthanide doped LaPO4, GdPO4, YPO4, and LuPO4 [J]. J. Mater. Chem. C, 2018, 6(2): 369-379. doi: 10.1039/c7tc05221ahttp://dx.doi.org/10.1039/c7tc05221a
LYU T S, DORENBOS P. Vacuum-referred binding energies of bismuth and lanthanide levels in ARE(Si, Ge)O4(A=Li, Na; RE=Y, Lu); toward designing charge-carrier-trapping processes for energy storage [J]. Chem. Mater., 2020, 32(3): 1192-1209. doi: 10.1021/acs.chemmater.9b04341http://dx.doi.org/10.1021/acs.chemmater.9b04341
DORENBOS P. Modeling the chemical shift of lanthanide 4f electron binding energies [J]. Phys. Rev. B, 2012, 85(16): 165107-1-10. doi: 10.1103/physrevb.85.165107http://dx.doi.org/10.1103/physrevb.85.165107
LUO H D, NING L X, DONG Y Y, et al. Electronic structure and site occupancy of lanthanide-doped (Sr, Ca)3(Y, Lu)2Ge3O12 garnets: a spectroscopic and first-principles study [J]. J. Phys. Chem. C, 2016, 120(50): 28743-28752. doi: 10.1021/acs.jpcc.6b09077http://dx.doi.org/10.1021/acs.jpcc.6b09077
LUO H D, BOS A J J, DOBROWOLSKA A, et al. Low-temperature VUV photoluminescence and thermoluminescence of UV excited afterglow phosphor Sr3AlxSi1-xO5∶Ce3+,Ln3+(Ln = Er, Nd, Sm, Dy and Tm) [J]. Phys. Chem. Chem. Phys., 2015, 17(23): 15419-15427. doi: 10.1039/c5cp01710fhttp://dx.doi.org/10.1039/c5cp01710f
DORENBOS P. The Eu3+ charge transfer energy and the relation with the band gap of compounds [J]. J. Lumin., 2005, 111(1-2): 89-104. doi: 10.1016/j.jlumin.2004.07.003http://dx.doi.org/10.1016/j.jlumin.2004.07.003
DORENBOS P. Ce3+ 5d-centroid shift and vacuum referred 4f-electron binding energies of all lanthanide impurities in 150 different compounds [J]. J. Lumin., 2013, 135: 93-104. doi: 10.1016/j.jlumin.2012.09.034http://dx.doi.org/10.1016/j.jlumin.2012.09.034
DORENBOS P. Charge transfer bands in optical materials and related defect level location [J]. Opt. Mater., 2017, 69: 8-22. doi: 10.1016/j.optmat.2017.03.061http://dx.doi.org/10.1016/j.optmat.2017.03.061
DORENBOS P, ROGERS E G. Vacuum referred binding energies of the lanthanides in transition metal oxide compounds [J]. ECS J. Solid State Sci. Technol., 2014, 3(8): R150-R158. doi: 10.1149/2.0061408jsshttp://dx.doi.org/10.1149/2.0061408jss
LUO H D, BOS A J J, DORENBOS P. Controlled electron-hole trapping and detrapping process in GdAlO3 by valence band engineering [J]. J. Phys. Chem. C, 2016, 120(11): 5916-5925. doi: 10.1021/acs.jpcc.6b00129http://dx.doi.org/10.1021/acs.jpcc.6b00129
DORENBOS P. The Pr3+ and Tb3+ ground state locations in compounds obtained from thermoluminescence and intervalence charge transfer studies [J]. Opt. Mater., 2019, 91: 333-337. doi: 10.1016/j.optmat.2019.03.044http://dx.doi.org/10.1016/j.optmat.2019.03.044
DORENBOS P. The nephelauxetic effect on the electron binding energy in the 4f q ground state of lanthanides in compounds [J]. J. Lumin., 2019, 214: 116536-1-30. doi: 10.1016/j.jlumin.2019.116536http://dx.doi.org/10.1016/j.jlumin.2019.116536
DORENBOS P. [INVITED] Improved parameters for the lanthanide 4f q and 4f q-15d curves in HRBE and VRBE schemes that takes the nephelauxetic effect into account [J]. J. Lumin., 2020, 222: 117164-1-11. doi: 10.1016/j.jlumin.2020.117164http://dx.doi.org/10.1016/j.jlumin.2020.117164
PARTINGTON J R. A History of Chemistry [M]. London: Macmillan International Higher Education, 1964.
SADLER P J, LI H Y, SUN H Z. Coordination chemistry of metals in medicine: target sites for bismuth [J]. Coord. Chem. Rev., 1999, 185-186: 689-709. doi: 10.1016/s0010-8545(99)00018-1http://dx.doi.org/10.1016/s0010-8545(99)00018-1
WANG X S, HENG C, QIAO Z, et al. First-principles study on luminescent properties of Bi3+-doped ALuGeO4 (A=Li, Na): insights into effects of host cation on emission wavelength [J]. J. Lumin., 2022, 244: 118700. doi: 10.1016/j.jlumin.2021.118700http://dx.doi.org/10.1016/j.jlumin.2021.118700
AWATER R H P, DORENBOS P. The Bi3+ 6s and 6p electron binding energies in relation to the chemical environment of inorganic compounds [J]. J. Lumin., 2017, 184: 221-231. doi: 10.1016/j.jlumin.2016.12.021http://dx.doi.org/10.1016/j.jlumin.2016.12.021
JACOBS P W M. Alkali halide crystals containing impurity ions with the ns2 ground-state electronic configuration [J]. J. Phys. Chem. Solids, 1991, 52(1): 35-67. doi: 10.1016/0022-3697(91)90059-9http://dx.doi.org/10.1016/0022-3697(91)90059-9
AWATER R H P, DORENBOS P. X-ray induced valence change and vacuum referred binding energies of Bi3+ and Bi2+ in Li2BaP2O7 [J]. J. Phys. Chem. C, 2016, 120(28): 15114-15118. doi: 10.1021/acs.jpcc.6b05312http://dx.doi.org/10.1021/acs.jpcc.6b05312
BLASSE G, MEIJERINK A, NOMES M, et al. Unusual bismuth luminescence in strontium tetraborate (SrB4O7∶Bi) [J]. J. Phys. Chem. Solids, 1994, 55(2): 171-174. doi: 10.1016/0022-3697(94)90075-2http://dx.doi.org/10.1016/0022-3697(94)90075-2
PENG M Y, WONDRACZEK L. Bi2+-doped strontium borates for white-light-emitting diodes [J]. Opt. Lett., 2009, 34(19): 2885-2887. doi: 10.1364/ol.34.002885http://dx.doi.org/10.1364/ol.34.002885
BOUTINAUD P, CAVALLI E. Predicting metal-to-metal charge transfer in closed-shell transition metal oxides doped with Bi3+ or Pb2+ [J]. Chem. Phys. Lett., 2011, 503(4-9): 239-243. doi: 10.1016/j.cplett.2011.01.036http://dx.doi.org/10.1016/j.cplett.2011.01.036
DORENBOS P. Electronic structure of Bi-activated luminescent compounds and pure bismuth photocatalytic compounds [J]. ECS J. Solid State Sci. Technol., 2021, 10(8): 086002-1-12. doi: 10.1149/2162-8777/ac19c6http://dx.doi.org/10.1149/2162-8777/ac19c6
LI L Y, CAO J K, VIANA B, et al. Site occupancy preference and antithermal quenching of the Bi2+ deep red emission in β-Ca2P2O7∶Bi2+ [J]. Inorg. Chem., 2017, 56(11): 6499-6506. doi: 10.1021/acs.inorgchem.7b00564http://dx.doi.org/10.1021/acs.inorgchem.7b00564
AWATER R H P, DORENBOS P. Towards a general concentration quenching model of Bi3+ luminescence [J]. J. Lumin., 2017, 188: 487-489. doi: 10.1016/j.jlumin.2017.05.011http://dx.doi.org/10.1016/j.jlumin.2017.05.011
KATAYAMA Y, UEDA J, TANABE S. Effect of Bi2O3 doping on persistent luminescence of MgGeO3∶Mn2+ phosphor [J]. Opt. Mater. Express, 2014, 4(4): 613-623. doi: 10.1364/ome.4.000613http://dx.doi.org/10.1364/ome.4.000613
JOOS J J, KORTHOUT K, AMIDANI L, et al. Identification of Dy3+/Dy2+ as electron trap in persistent phosphors [J]. Phys. Rev. Lett., 2020, 125(3): 033001-1-7. doi: 10.1103/physrevlett.125.033001http://dx.doi.org/10.1103/physrevlett.125.033001
UEDA J, KATAYAMA M, ASAMI K, et al. Evidence of valence state change of Ce3+ and Cr3+ during UV charging process in Y3Al2Ga3O12 persistent phosphors [J]. Opt. Mater. Express, 2017, 7(7): 2471-2476. doi: 10.1364/ome.7.002471http://dx.doi.org/10.1364/ome.7.002471
UEDA J, MIYANO S, TANABE S. Formation of deep electron traps by Yb3+ codoping leads to super-long persistent luminescence in Ce3+-doped yttrium aluminum gallium garnet phosphors [J]. ACS Appl. Mater. Interfaces, 2018, 10(24): 20652-20660. doi: 10.1021/acsami.8b02758http://dx.doi.org/10.1021/acsami.8b02758
UEDA J, DORENBOS P, BOS A J J, et al. Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering [J]. J. Mater. Chem. C, 2015, 3(22): 5642-5651. doi: 10.1039/c5tc00546ahttp://dx.doi.org/10.1039/c5tc00546a
LUO H D, BOS A J J, DORENBOS P. Charge carrier trapping processes in RE2O2S(RE=La, Gd, Y, and Lu) [J]. J. Phys. Chem. C, 2017, 121: 8760-8769. doi: 10.1021/acs.jpcc.7b01577http://dx.doi.org/10.1021/acs.jpcc.7b01577
TASKER P W, STONEHAM A M. An appraisal of the molecular model for the vk centre [J]. J. Phys. Chem. Solids, 1977, 38(10): 1185-1189. doi: 10.1016/0022-3697(77)90047-6http://dx.doi.org/10.1016/0022-3697(77)90047-6
ZHUANG Y X, LV Y, LI Y, et al. Study on trap levels in SrSi2AlO2N3∶Eu2+,Ln3+ persistent phosphors based on host-referred binding energy scheme and thermoluminescence analysis [J]. Inorg. Chem., 2016, 55(22): 11890-11897. doi: 10.1021/acs.inorgchem.6b01971http://dx.doi.org/10.1021/acs.inorgchem.6b01971
ZHUANG Y X, LV Y, WANG L, et al. Trap depth engineering of SrSi2O2N2∶Ln2+,Ln3+ (Ln2+=Yb, Eu;Ln3+=Dy, Ho, Er) persistent luminescence materials for information storage applications [J]. ACS Appl. Mater. Interfaces, 2018, 10(2): 1854-1864. doi: 10.1021/acsami.7b17271http://dx.doi.org/10.1021/acsami.7b17271
LI W H, ZHUANG Y X, ZHENG P, et al. Tailoring trap depth and emission wavelength in Y3Al5-xGaxO12∶Ce3+,V3+ phosphor-in-glass films for optical information storage [J]. ACS Appl. Mater. Interfaces, 2018, 10(32): 27150-27159. doi: 10.1021/acsami.8b10713http://dx.doi.org/10.1021/acsami.8b10713
UEDA J, MAKI R, TANABE S. Vacuum referred binding energy(VRBE)-guided design of orange persistent Ca3Si2O7∶Eu2+ phosphors [J]. Inorg. Chem., 2017, 56(17): 10353-10360. doi: 10.1021/acs.inorgchem.7b01214http://dx.doi.org/10.1021/acs.inorgchem.7b01214
LYU T S, DORENBOS P. Designing thermally stimulated 1.06 µm Nd3+ emission for the second bio-imaging window demonstrated by energy transfer from Bi3+ in La-, Gd-, Y-, and LuPO4 [J]. Chem. Eng. J., 2019, 372: 978-991. doi: 10.1016/j.cej.2019.04.125http://dx.doi.org/10.1016/j.cej.2019.04.125
LYU T S, DORENBOS P. Towards information storage by designing both electron and hole detrapping processes in bismuth and lanthanide-doped LiRE(Si, Ge)O4(RE=Y, Lu) with high charge carrier storage capacity [J]. Chem. Eng. J., 2020, 400: 124776-1-17. doi: 10.1016/j.cej.2020.124776http://dx.doi.org/10.1016/j.cej.2020.124776
LYU T S, DORENBOS P, LI C H, et al. Wide range X-ray to infrared photon detection and energy storage in LiTaO3∶Bi3+,Dy3+ perovskite [J]. Laser Photonics Rev., 2022:2200055-1-17 . doi: 10.1016/j.cej.2022.135038http://dx.doi.org/10.1016/j.cej.2022.135038
LYU T S, DORENBOS P, XIONG P X, et al. LiTaO3∶Bi3+,Tb3+,Ga3+,Ge4+: a smart perovskite with high charge carrier storage capacity for X-ray imaging, stress sensing, and non-real-time recording [J]. Adv. Funct. Mater., 2022: 2206024-1-14. doi: 10.1002/adfm.202206024http://dx.doi.org/10.1002/adfm.202206024
0
浏览量
577
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构