浏览全部资源
扫码关注微信
1.武汉理工大学 硅酸盐建筑材料国家重点实验室, 湖北 武汉 430070
2.武汉理工大学 材料科学与工程学院, 湖北 武汉 430070
3.华中科技大学 武汉光电国家研究中心, 湖北 武汉 430074
[ "孙锡娟(1999-),女,湖北恩施人,硕士研究生,2021年于三峡大学获得学士学位,主要从事钙钛矿X射线探测方向的研究。 E-mail: sun1511351@163.com" ]
[ " 夏梦玲(1989-),女,湖北鄂州人,博士,研究员,2017年于武汉理工大学获得博士学位,主要从事钙钛矿半导体材料与辐射探测器件的研究。E-mail: xiamengling@whut.edu.cn" ]
[ "牛广达(1988-),男,河北廊坊人,博士,教授,博士生导师,2016年于清华大学获得博士学位,主要从事金属卤化物X射线探测器及成像技术方向的研究。" ]
纸质出版日期:2022-07-05,
收稿日期:2022-04-02,
修回日期:2022-04-16,
扫 描 看 全 文
孙锡娟,夏梦玲,许银生等.钙钛矿直接型X射线探测成像研究进展[J].发光学报,2022,43(07):1014-1026.
SUN Xi-juan,XIA Meng-ling,XU Yin-sheng,et al.Research Progress of Perovskite Direct X-ray Imaging[J].Chinese Journal of Luminescence,2022,43(07):1014-1026.
孙锡娟,夏梦玲,许银生等.钙钛矿直接型X射线探测成像研究进展[J].发光学报,2022,43(07):1014-1026. DOI: 10.37188/CJL.20220119.
SUN Xi-juan,XIA Meng-ling,XU Yin-sheng,et al.Research Progress of Perovskite Direct X-ray Imaging[J].Chinese Journal of Luminescence,2022,43(07):1014-1026. DOI: 10.37188/CJL.20220119.
X射线探测广泛应用于医疗诊断,工业探伤、安防安检等各个领域,其中X射线面阵探测器是影像设备中的关键部件。利用半导体材料一步将X射线转换为电信号,可以实现高空间分辨率。钙钛矿材料由于X射线衰减序数高、载流子扩散距离长、辐照稳定等优势近年来已成为直接型X射线探测器的明星材料。本文简要介绍了直接型X射线探测原理、关键性质及核心材料,阐述了卤化物钙钛矿在直接型X射线探测器中的应用优势,综述了钙钛矿单像素探测器和与TFT集成的面阵探测器的特点及最新研究进展,最后,提出了目前面对的技术挑战和潜在解决方案,对基于卤化物钙钛矿的X射线面阵探测器的未来发展趋势进行了展望。
X-ray detection is widely used in medical diagnosis, industrial flaw detection, security and other fields, and X-ray array detector is the key part of imaging equipment. High spatial resolution can be achieved by converting X-ray into electrical signals in one step using semiconductor materials. Perovskite material has become the star material of direct X-ray detector in recent years due to its advantages of high X-ray decay ordinal number, long carrier diffusion distance and irradiation stability. This paper briefly introduces the principle, critical nature and core materials of the direct type of X-ray detection, indicates the advantages of halide perovskite in applying in direct X-ray detector and expounds the characteristics and the latest research progress of both perovskite single pixel detector and TFT integrated array detector. Finally, the current technical challenges and potential solutions are put forward, and the future development trend of X-ray detector based on halide perovskite is prospected.
X射线探测成像钙钛矿面阵探测器TFT集成
X-ray imagingperovskitearray detectorintegrated with TFT
ZHOU S A,BRAHME A. Development of phase-contrast X-ray imaging techniques and potential medical applications [J]. Phys. Med., 2008,24(3):129-148. doi: 10.1016/j.ejmp.2008.05.006http://dx.doi.org/10.1016/j.ejmp.2008.05.006
DU Z,HU Y G,ALI BUTTAR N,et al. X-ray computed tomography for quality inspection of agricultural products:a review [J]. Food Sci. Nutr., 2019,7(10):3146-3160. doi: 10.1016/j.inpa.2019.09.003http://dx.doi.org/10.1016/j.inpa.2019.09.003
OLIVO A,CHANA D,SPELLER R. A preliminary investigation of the potential of phase contrast X-ray imaging in the field of homeland security [J]. J. Phys. D:Appl. Phys., 2008,41(22):225503-1-9. doi: 10.1088/0022-3727/41/22/225503http://dx.doi.org/10.1088/0022-3727/41/22/225503
MADDALENA F,TJAHJANA L,XIE A Z,et al. Inorganic,organic,and perovskite halides with nanotechnology for high-light yield X- and γ-ray scintillators [J]. Crystals, 2019,9(2):88-1-29. doi: 10.3390/cryst9020088http://dx.doi.org/10.3390/cryst9020088
NIKL M. Scintillation detectors for X-rays [J]. Meas. Sci. Technol., 2006,17(4):R37-R54. doi: 10.1088/0957-0233/17/4/r01http://dx.doi.org/10.1088/0957-0233/17/4/r01
WEI H T,HUANG J S. Halide lead perovskites for ionizing radiation detection [J]. Nat. Commun., 2019,10(1):1066-1-12. doi: 10.1038/s41467-019-08981-whttp://dx.doi.org/10.1038/s41467-019-08981-w
KASAP S O,ROWLANDS J A. Direct-conversion flat-panel X-ray image sensors for digital radiography [J]. Proc. IEEE., 2002,90(4):591-604. doi: 10.1109/jproc.2002.1002529http://dx.doi.org/10.1109/jproc.2002.1002529
ZHOU Y,CHEN J,BAKR O M,et al. Metal halide perovskites for X-ray imaging scintillators and detectors [J]. ACS Energy Lett., 2021,6(2):739-768. doi: 10.1021/acsenergylett.0c02430http://dx.doi.org/10.1021/acsenergylett.0c02430
XIA M L,YUAN J H,NIU G D,et al. Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-ray detectors with low detection limit and high stability [J]. Adv. Funct. Mater., 2020,30(24):1910648-1-8. doi: 10.1002/adfm.201910648http://dx.doi.org/10.1002/adfm.201910648
GUERRA M,MANSO M,LONGELIN S,et al. Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications [J]. J. Instrum., 2012,7(10):C10004-1-9. doi: 10.1088/1748-0221/7/10/c10004http://dx.doi.org/10.1088/1748-0221/7/10/c10004
LUKE P N,AMMAN M,TINDALL C,et al. Recent developments in semiconductor gamma-ray detectors [J]. J. Radioanal. Nucl. Chem., 2005,264(1):145-153. doi: 10.1007/s10967-005-0687-8http://dx.doi.org/10.1007/s10967-005-0687-8
KASAP S O. X-ray sensitivity of photoconductors:application to stabilized a-Se [J]. J. Phys. D:Appl. Phys., 2000,33(21):2853-2865. doi: 10.1088/0022-3727/33/21/326http://dx.doi.org/10.1088/0022-3727/33/21/326
DU H,ANTONUK L E,EL-MOHRI Y,et al. Investigation of the signal behavior at diagnostic energies of prototype,direct detection,active matrix,flat-panel imagers incorporating polycrystalline HgI2 [J]. Phys. Med. Biol., 2008,53(5):1325-1351. doi: 10.1088/0031-9155/53/5/011http://dx.doi.org/10.1088/0031-9155/53/5/011
CHEN F,WANG K,FANG Y,et al. Direct-conversion X-ray detector using lateral amorphous selenium structure [J]. IEEE Sens. J., 2011,11(2):505-509. doi: 10.1109/jsen.2010.2061841http://dx.doi.org/10.1109/jsen.2010.2061841
SZELES C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications [J]. Phys. Status Solidi(B), 2004,241(3):783-790. doi: 10.1002/pssb.200304296http://dx.doi.org/10.1002/pssb.200304296
CHEN Q S,WU J,OU X Y,et al. All-inorganic perovskite nanocrystal scintillators [J]. Nature, 2018,561(7721):88-93. doi: 10.1038/s41586-018-0451-1http://dx.doi.org/10.1038/s41586-018-0451-1
YAKUNIN S,DIRIN D N,SHYNKARENKO Y,et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites [J]. Nat. Photonics, 2016,10(9):585-589. doi: 10.1038/nphoton.2016.139http://dx.doi.org/10.1038/nphoton.2016.139
WANGYANG P H,GONG C H,RAO G F,et al. Recent advances in halide perovskite photodetectors based on different dimensional materials [J]. Adv. Opt. Mater., 2018,6(11):1701302-1-30. doi: 10.1002/adom.201701302http://dx.doi.org/10.1002/adom.201701302
SUN S B,YUAN D,XU Y,et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature [J]. ACS Nano, 2016,10(3):3648-3657. doi: 10.1021/acsnano.5b08193http://dx.doi.org/10.1021/acsnano.5b08193
PAN A Z,MA X Q,HUANG S Y,et al. CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction [J]. J. Phys. Chem. Lett., 2019,10(21):6590-6597. doi: 10.1021/acs.jpclett.9b02605http://dx.doi.org/10.1021/acs.jpclett.9b02605
ZHANG P,HUA Y Q,XU Y D,et al. Ultrasensitive and robust 120 keV hard X-ray imaging detector based on mixed-halide perovskite CsPbBr3-nIn single crystals [J]. Adv. Mater., 2022,34(12):2106562. doi: 10.1002/adma.202106562http://dx.doi.org/10.1002/adma.202106562
PENG Z X,YANG D D,YIN B Z,et al. Self-assembled ultrafine CsPbBr3 perovskite nanowires for polarized light detection [J]. Sci. China Mater., 2021,64(9):2261-2271. doi: 10.1007/s40843-020-1619-6http://dx.doi.org/10.1007/s40843-020-1619-6
WANG Y,XIA Z G,DU S N,et al. Solution-processed photodetectors based on organic-inorganic hybrid perovskite and nanocrystalline graphite [J]. Nanotechnology, 2016,27(17):175201-1-7. doi: 10.1088/0957-4484/27/17/175201http://dx.doi.org/10.1088/0957-4484/27/17/175201
ZHANG M,ZHAO W,XIN D Y,et al. Solvent free laminated fabrication of lead halide perovskites for sensitive and stable X-ray detection [J]. J. Phys. Chem. Lett., 2021,12(29):6961-6966. doi: 10.1021/acs.jpclett.1c02171http://dx.doi.org/10.1021/acs.jpclett.1c02171
HU M X,JIA S S,LIU Y C,et al. Large and dense organic-inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity [J]. ACS Appl. Mater. Interfaces, 2020,12(14):16592-16600. doi: 10.1021/acsami.9b23158http://dx.doi.org/10.1021/acsami.9b23158
WANG X,WU Y,LI G W,et al. Ultrafast ionizing radiation detection by p-n junctions made with single crystals of solution-processed perovskite [J]. Adv. Electron. Mater., 2018,4(11):1800237. doi: 10.1002/aelm.201800237http://dx.doi.org/10.1002/aelm.201800237
YE F,LIN H,WU H D,et al. High-quality cuboid CH3NH3PbI3 single crystals for high performance X-ray and photon detectors [J]. Adv. Funct. Mater., 2019,29(6):1806984-1-7. doi: 10.1002/adfm.201806984http://dx.doi.org/10.1002/adfm.201806984
PAN W C,YANG B,NIU G D,et al. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection [J]. Adv. Mater., 2019,31(44):1904405-1-8. doi: 10.1002/adma.201904405http://dx.doi.org/10.1002/adma.201904405
LI J C,DU X Y,NIU G D,et al. Rubidium doping to enhance carrier transport in CsPbBr3 single crystals for high-performance X-ray detection [J]. ACS Appl. Mater. Interfaces, 2020,12(1):989-996. doi: 10.1021/acsami.9b14772http://dx.doi.org/10.1021/acsami.9b14772
YUAN W N,NIU G D,XIAN Y M,et al. In situ regulating the order-disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector [J]. Adv. Funct. Mater., 2019,29(20):1900234-1-9. doi: 10.1002/adfm.201900234http://dx.doi.org/10.1002/adfm.201900234
KESHAVARZ M,DEBROYE E,OTTESEN M,et al. Tuning the structural and optoelectronic properties of Cs2AgBiBr6 double-perovskite single crystals through alkali-metal substitution [J]. Adv. Mater., 2020,32(40):2001878-1-10. doi: 10.1002/adma.202001878http://dx.doi.org/10.1002/adma.202001878
YIN W J,SHI T T,YAN Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber [J]. Appl. Phys. Lett., 2014,104(6):063903-1-4. doi: 10.1063/1.4864778http://dx.doi.org/10.1063/1.4864778
DE ARQUER F P G,ARMIN A,MEREDITH P,et al. Solution-processed semiconductors for next-generation photodetectors [J]. Nat. Rev. Mater., 2017,2(3):16100-1-17. doi: 10.1038/natrevmats.2016.100http://dx.doi.org/10.1038/natrevmats.2016.100
BAHTIAR A,RAHMANITA S,INAYATIE Y D. Pin-hole free perovskite film for solar cells application prepared by controlled two-step spin-coating method [J]. IOP Conf. Ser.:Mater. Sci. Eng., 2017,196:012037-1-7. doi: 10.1088/1757-899x/196/1/012037http://dx.doi.org/10.1088/1757-899x/196/1/012037
WEI J J,TAO L T,LI L Q,et al. Tuning the photon sensitization mechanism in metal-halide-perovskite-based nanocomposite films toward highly efficient and stable X-ray detection [J]. Adv. Opt. Mater., 2022,10(7):2102320. doi: 10.1002/adom.202102320http://dx.doi.org/10.1002/adom.202102320
KIM Y C,KIM K H,SON D Y,et al. Printable organometallic perovskite enables large-area,low-dose X-ray imaging [J]. Nature, 2017,550(7674):87-91. doi: 10.1038/nature24032http://dx.doi.org/10.1038/nature24032
PROKESCH M,SOLDNER S A,SUNDARAM A G. CdZnTe detectors for gamma spectroscopy and X-ray photon counting at 250 × 106 photons/(mm2·s) [J]. J. Appl. Phys., 2018,124(4):044503-1-8. doi: 10.1063/1.5041006http://dx.doi.org/10.1063/1.5041006
ZHU H L,LIN H,SONG Z L,et al. Achieving high-quality Sn-Pb perovskite films on complementary metal-oxide-semiconductor-compatible metal/silicon substrates for efficient imaging array [J]. ACS Nano, 2019,13(10):11800-11808. doi: 10.1021/acsnano.9b05774http://dx.doi.org/10.1021/acsnano.9b05774
LIU Y C,ZHANG Y X,ZHAO K,et al. A 1 300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals [J]. Adv. Mater., 2018,30(29):1707314-1-11. doi: 10.1002/adma.201707314http://dx.doi.org/10.1002/adma.201707314
DENG W,ZHANG X J,HUANG L M,et al. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability [J]. Adv. Mater., 2016,28(11):2201-2208. doi: 10.1002/adma.201505126http://dx.doi.org/10.1002/adma.201505126
ZHANG M J,WANG L X,MENG L H,et al. Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection [J]. Adv. Opt. Mater., 2018,6(16):1800077-1-7. doi: 10.1002/adom.201800077http://dx.doi.org/10.1002/adom.201800077
LIU J Y,SHABBIR B,WANG C J,et al. Flexible,printable soft-X-ray detectors based on all-inorganic perovskite quantum dots [J]. Adv. Mater., 2019,31(30):1901644-1-8. doi: 10.1002/adma.201970214http://dx.doi.org/10.1002/adma.201970214
XIA M L,SONG Z H,WU H D,et al. Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager [J]. Adv. Funct. Mater., 2022,32(16):2110729-1-10. doi: 10.1002/adfm.202110729http://dx.doi.org/10.1002/adfm.202110729
DEUMEL S,BREEMEN AVAN,GELINCK G,et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites [J]. Nat. Electron., 2021,4(9):681-688. doi: 10.1038/s41928-021-00644-3http://dx.doi.org/10.1038/s41928-021-00644-3
GUO J,XU Y D,YANG W H,et al. High-stability flexible X-ray detectors based on lead-free halide perovskite Cs2TeI6 films [J]. ACS Appl. Mater. Interfaces, 2021,13(20):23928-23935. doi: 10.1021/acsami.1c04252http://dx.doi.org/10.1021/acsami.1c04252
SHRESTHA S,FISCHER R,MATT G J,et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers [J]. Nat. Photonics, 2017,11(7):436-440. doi: 10.1038/nphoton.2017.94http://dx.doi.org/10.1038/nphoton.2017.94
PAN W C,WU H D,LUO J J,et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit [J]. Nat. Photonics, 2017,11(11):726-732. doi: 10.1038/s41566-017-0012-4http://dx.doi.org/10.1038/s41566-017-0012-4
LIU Y C,ZHANG Y X,ZHU X J,et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging [J]. Adv. Mater., 2021,33(8):2006010-1-10. doi: 10.1002/adma.202006010http://dx.doi.org/10.1002/adma.202006010
JANSEN-VAN VUUREN R D,ARMIN A,PANDEY A K,et al. Organic photodiodes:the future of full color detection and image sensing [J]. Adv. Mater., 2016,28(24):4766-4802. doi: 10.1002/adma.201505405http://dx.doi.org/10.1002/adma.201505405
LI L D,YE S,QU J L,et al. Recent advances in perovskite photodetectors for image sensing [J]. Small, 2021,17(18):2005606. doi: 10.1002/smll.202005606http://dx.doi.org/10.1002/smll.202005606
ZENG L H,CHEN Q M,ZHANG Z X,et al. Multilayered PdSe2/perovskite schottky junction for fast,self-powered,polarization-sensitive,broadband photodetectors,and image sensor application [J]. Adv. Sci., 2019,6(19):1901134-1-9. doi: 10.1002/advs.201901134http://dx.doi.org/10.1002/advs.201901134
YANG B,PAN W C,WU H D,et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging [J]. Nat. Commun., 2019,10(1):1989-1-10. doi: 10.1038/s41467-019-09968-3http://dx.doi.org/10.1038/s41467-019-09968-3
DU X Y,LIU Y M,PAN W C,et al. Chemical potential diagram guided rational tuning of electrical properties:a case study of CsPbBr3 for X-ray detection [J]. Adv. Mater., 2022,34(17):2110252. doi: 10.1002/adma.202110252http://dx.doi.org/10.1002/adma.202110252
ZHAO J J,ZHAO L,DENG Y H,et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays [J]. Nat. Photonics, 2020,14(10):612-617. doi: 10.1038/s41566-020-0678-xhttp://dx.doi.org/10.1038/s41566-020-0678-x
WU H D,GE Y S,NIU G D,et al. Metal halide perovskites for X-ray detection and imaging [J]. Matter, 2021,4(1):144-163. doi: 10.1016/j.matt.2020.11.015http://dx.doi.org/10.1016/j.matt.2020.11.015
CHEN H,YE F,TANG W T,et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules [J]. Nature, 2017,550(7674):92-95. doi: 10.1038/nature23877http://dx.doi.org/10.1038/nature23877
SHAO Y C,FANG Y J,LI T,et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films [J]. Energy Environ. Sci., 2016,9(5):1752-1759. doi: 10.1039/c6ee00413jhttp://dx.doi.org/10.1039/c6ee00413j
WEI H T,FANG Y J,MULLIGAN P,et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals [J]. Nat. Photonics, 2016,10(5):333-339. doi: 10.1038/nphoton.2016.41http://dx.doi.org/10.1038/nphoton.2016.41
ZHANG H J,WANG F B,LU Y F,et al. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals [J]. J. Mater. Chem. C, 2020,8(4):1248-1256. doi: 10.1039/c9tc05490ahttp://dx.doi.org/10.1039/c9tc05490a
ZHANG B B,LIU X,XIAO B,et al. High-performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3 [J]. J. Phys. Chem. Lett., 2020,11(2):432-437. doi: 10.1021/acs.jpclett.9b03523http://dx.doi.org/10.1021/acs.jpclett.9b03523
JI C M,WANG S S,WANG Y X,et al. 2D hybrid perovskite ferroelectric enables highly sensitive X-ray detection with low driving voltage [J]. Adv. Funct. Mater., 2020,30(5):1905529. doi: 10.1002/adfm.201905529http://dx.doi.org/10.1002/adfm.201905529
XU Y D,JIAO B,SONG T B,et al. Zero-dimensional Cs2TeI6 perovskite:solution-processed thick films with high X-ray sensitivity [J]. ACS Photonics, 2019,6(1):196-203. doi: 10.1021/acsphotonics.8b01425http://dx.doi.org/10.1021/acsphotonics.8b01425
ZHANG Y X,LIU Y C,XU Z,et al. Publisher correction:nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection [J]. Nat. Commun., 2020,11(1):3007-1-2. doi: 10.1038/s41467-020-16809-1http://dx.doi.org/10.1038/s41467-020-16809-1
LIU Y C,XU Z,YANG Z,et al. Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging [J]. Matter, 2020,3(1):180-196. doi: 10.1016/j.matt.2020.04.017http://dx.doi.org/10.1016/j.matt.2020.04.017
HE X,XIA M L,WU H D,et al. Quasi-2D perovskite thick film for X-ray detection with low detection limit [J]. Adv. Funct. Mater., 2022,32(7):2109458. doi: 10.1002/adfm.202109458http://dx.doi.org/10.1002/adfm.202109458
HE Y H,HADAR I,DE SIENA M C,et al. Sensitivity and detection limit of spectroscopic-grade perovskite CsPbBr3 crystal for hard X-ray detection [J]. Adv. Funct. Mater., 2022,32(24):2112925. doi: 10.1002/adfm.202112925http://dx.doi.org/10.1002/adfm.202112925
0
浏览量
634
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构