浏览全部资源
扫码关注微信
中国计量大学 光电材料与器件研究所, 浙江 杭州 310018
[ "温一诺(1997-),女,河北承德人,硕士研究生,2020年于湖北文理学院获得学士学位,主要从事稀土离子掺杂荧光材料温度传感特性的研究。" ]
[ "陈亮(1981-),男,河南南阳人,博士,教授,2012年于南京理工大学获得博士学位,主要从事稀土离子掺杂荧光材料温度传感特性的研究。" ]
纸质出版日期:2022-10-05,
收稿日期:2022-03-23,
修回日期:2022-04-11,
扫 描 看 全 文
温一诺,周柳艳,陈彦伶等.La2ATiO6(A=Mg,Zn)∶Er3+荧光材料的上转换发光特性及温度传感特性调控[J].发光学报,2022,43(10):1552-156310.37188/CJL.20220099.
WEN Yi-nuo,ZHOU Liu-yan,CHEN Yan-ling,et al.Up-conversion Luminescence and Temperature Sensing Properties of La2ATiO6(A=Mg, Zn) Phosphor[J].Chinese Journal of Luminescence,2022,43(10):1552-156310.37188/CJL.20220099.
温一诺,周柳艳,陈彦伶等.La2ATiO6(A=Mg,Zn)∶Er3+荧光材料的上转换发光特性及温度传感特性调控[J].发光学报,2022,43(10):1552-156310.37188/CJL.20220099. DOI:
WEN Yi-nuo,ZHOU Liu-yan,CHEN Yan-ling,et al.Up-conversion Luminescence and Temperature Sensing Properties of La2ATiO6(A=Mg, Zn) Phosphor[J].Chinese Journal of Luminescence,2022,43(10):1552-156310.37188/CJL.20220099. DOI:
Er
3+
的上转换性能强烈依赖局部位置对称畸变。在本研究中,采用高温固相法制备了La
2
Mg
(1-
w
)
Zn
w
TiO
6
∶
x
Er
3+
(
x
=0,0.02,0.04,0.06,0.08,0.10;
w=
0,0.3,0.5,0.7,1.0)系列荧光粉。基于XRD精修,Zn
2+
的掺杂改变了La
2
MgTiO
6
晶体的配位环境,晶相由
Pbnm
转变为
P
2
1/
n
。在980 nm激光激发下,样品上转换荧光强度随Er
3+
离子浓度改变,当Er
3+
离子浓度为
x
=0.06时样品的上转换荧光强度最强。基于荧光强度比技术研究了样品La
2
Mg
(1-
w
)
Zn
w
TiO
6
∶
x
Er
3+
(
x
=0.06;
w
=0,0.3,0.5,0.7,1.0)在303~583 K温度范围内的上转换荧光温度传感特性。实验结果表明,灵敏度随着Mg
2+
和Zn
2+
掺杂浓度比例的改变而改变,在
w
=1.0时达到最大绝对灵敏度0.90%·K
-1
,说明Zn
2+
的掺杂提高了La
2
MgTiO
6
的灵敏度。
The up-conversion performance of Er
3+
strongly depends on local position symmetry distortion. In this study, the series of La
2(1-
x
)
Zn
w
Mg
(1
-w
)
TiO
6
∶
x
Er
3+
(
x
=0.06;
w
=0, 0.3, 0.5, 0.7, 1.0) were prepared by solid state reaction at high temperature. According to XRD refinement, the coordination environment of La
2
MgTiO
6
crystal was changed by Zn
2+
doping, and the crystal phase changed from
Pbnm
to
P
2
1/
n
. Besides, the up-conversion fluorescence intensity of the sample changed with the change of Er
3+
ion concentration excited by a 980 nm laser, and the concentration of Er
3+
was
x
=0.06 when the up-conversion fluorescence intensity was the highest. Based on the fluorescence intensity ratio technique, the temperature sensing properties of the samples La
2(1-
x
)
Zn
w
Mg
(1
-w
)
TiO
6
∶
x
Er
3+
(
x
=0.06;
w
=0, 0.3, 0.5, 0.7, 1.0) were studied from 303 K to 583 K. The results show that the sensitivity changes with the concentration ratio of Mg
2+
and Zn
2+
and reaches the maximum absolute sensitivity of 0.90%·K
-1
when
w
=1.0, which indicates that the doping of Zn
2+
increases the sensitivity of La
2
MgTiO
6
.
Er3+掺杂荧光粉荧光性能温度传感
Er3+ dopingfluorescent powderfluorescence propertiestemperature sensing
MATUSZEWSKA C, ELZBIECIAK-PIECKA K, MARCINIAK L. Transition metal ion-based nanocrystalline luminescent thermometry in SrTiO3∶Ni2+,Er3+ nanocrystals operating in the second optical window of biological tissues [J]. J. Phys. Chem. C, 2019, 123(30): 18646-18653. doi: 10.1021/acs.jpcc.9b04002http://dx.doi.org/10.1021/acs.jpcc.9b04002
MARCINIAK L, BEDNARKIEWICZ A. Nanocrystalline NIR-to-NIR luminescent thermometer based on Cr3+,Yb3+ emission [J]. Sens. Actuators B: Chem., 2017, 243: 388-393. doi: 10.1016/j.snb.2016.12.006http://dx.doi.org/10.1016/j.snb.2016.12.006
WANG Q, LIAO M, LIN Q, et al. A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials [J]. J. Alloys Compd., 2021, 850: 156744-1-14. doi: 10.1016/j.jallcom.2020.156744http://dx.doi.org/10.1016/j.jallcom.2020.156744
RAI V K, RAI D K, RAI S B. Pr3+ doped lithium tellurite glass as a temperature sensor [J]. Sens. Actuators A: Phys., 2006, 128(1): 14-17. doi: 10.1016/j.sna.2005.12.030http://dx.doi.org/10.1016/j.sna.2005.12.030
DONG B, CAO B S, HE Y Y, et al. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides [J]. Adv. Mater., 2012, 24(15): 1987-1993. doi: 10.1002/adma.201200431http://dx.doi.org/10.1002/adma.201200431
GAO Y, HUANG F, LIN H, et al. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states [J]. Adv. Funct. Mater., 2016, 26(18): 3139-3145. doi: 10.1002/adfm.201505332http://dx.doi.org/10.1002/adfm.201505332
SUO H, HU F F, ZHAO X Q, et al. All-in-one thermometer-heater up-converting platform YF3∶Yb3+,Tm3+ operating in the first biological window [J]. J. Mater. Chem. C, 2017, 5(6): 1501-1507. doi: 10.1039/c6tc05449hhttp://dx.doi.org/10.1039/c6tc05449h
CHEN Y, CHEN G H, LIU X Y, et al. Down-conversion luminescence and optical thermometric performance of Tb3+/Eu3+ doped phosphate glass [J]. J. Non‐Cryst. Solids, 2018, 484: 111-117. doi: 10.1016/j.jnoncrysol.2018.01.027http://dx.doi.org/10.1016/j.jnoncrysol.2018.01.027
DING M Y, ZHANG M, LU C H. Yb3+/Tm3+/Ho3+ tri-doped YPO4 submicroplates: a promising optical thermometer operating in the first biological window [J]. Mater. Lett., 2017, 209: 52-55. doi: 10.1016/j.matlet.2017.07.113http://dx.doi.org/10.1016/j.matlet.2017.07.113
LI X Y, YUAN S, HU F F, et al. Near-infrared to short-wavelength upconversion temperature sensing in transparent bulk glass ceramics containing hexagonal NaGdF4∶Yb3+/Ho3+ nanocrystals [J]. Opt. Mater. Express, 2017, 7(8): 3023-3033. doi: 10.1364/OME.7.003023http://dx.doi.org/10.1364/OME.7.003023
BACK M, TRAVE E, MAZZUCCO N, et al. Tuning the upconversion light emission by bandgap engineering in bismuth oxide-based upconverting nanoparticles [J]. Nanoscale, 2017, 9(19): 6353-6361. doi: 10.1039/c6nr09350ghttp://dx.doi.org/10.1039/c6nr09350g
KUANG Y, XU J T, WANG C, et al. Fine-tuning Ho-based red-upconversion luminescence by altering NaHoF4 core size and NaYbF4 shell thickness [J]. Chem. Mater., 2019, 31(19): 7898-7909. doi: 10.1021/acs.chemmater.9b01944http://dx.doi.org/10.1021/acs.chemmater.9b01944
PIRESA M, SERRA O A, HEER S, et al. Low-temperature upconversion spectroscopy of nanosized Y2O3∶Er, Yb phosphor [J]. J. Appl. Phys., 2005, 98(6): 063529-1-7. doi: 10.1063/1.2058195http://dx.doi.org/10.1063/1.2058195
YANG Y M, MI C, YU F, et al. Optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2O2S phosphor [J]. Ceram. Int., 2014, 40(7): 9875-9880. doi: 10.1016/j.ceramint.2014.02.081http://dx.doi.org/10.1016/j.ceramint.2014.02.081
SUO H, ZHAO X Q, ZHANG Z Y, et al. Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres [J]. Nanoscale, 2018, 10(19): 9245-9251. doi: 10.1039/c8nr01734dhttp://dx.doi.org/10.1039/c8nr01734d
FUH H R, LIU Y P, XIAO Z R, et al. New type of ferromagnetic insulator: double perovskite La2NiMO6 (M=Mn, Tc, Re, Ti, Zr, and Hf) [J]. J. Magn. Magn. Mater., 2014, 357: 7-12. doi: 10.1016/j.jmmm.2013.12.049http://dx.doi.org/10.1016/j.jmmm.2013.12.049
TAKEDAY, KATO H, KOBAYASHI M, et al. Photoluminescence properties of Mn4+-activated perovskite-type titanates, La2MTiO6∶Mn4+ (M = Mg and Zn) [J]. Chem. Phys. Lett., 2015, 44(11): 1541-1543. doi: 10.3389/fchem.2018.00467http://dx.doi.org/10.3389/fchem.2018.00467
HUA Y B, YU J S. Strong green emission of erbium(Ⅲ)-activated La2MgTiO6 phosphors for solid-state lighting and optical temperature sensors [J]. ACS Sustainable Chem. Eng., 2021, 9(14):5105-5115. doi: 10.1021/acssuschemeng.0c09375http://dx.doi.org/10.1021/acssuschemeng.0c09375
STOJILOVIC N. Using Cu Kα1/Kα2 splitting and a powder XRD system to discuss X-ray generation [J]. J. Chem. Educ., 2018, 95(4): 598-600. doi: 10.1021/acs.jchemed.7b00546http://dx.doi.org/10.1021/acs.jchemed.7b00546
TANG ZR, YIN X, ZHANG Y H, et al. Synthesis of titanate nanotube-CdS nanocomposites with enhanced visible light photocatalytic activity [J]. Inorg. Chem., 2013, 52(20): 11758-11766. doi: 10.1021/ic4010483http://dx.doi.org/10.1021/ic4010483
WOOD D L, TAUC J. Weak absorption tails in amorphous semiconductors [J]. Phys. Rev. B, 1972, 5(8): 3144-3151. doi: 10.1103/physrevb.5.3144http://dx.doi.org/10.1103/physrevb.5.3144
MORALES A E, MORA E S, PAL U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures [J]. Rev. Mexic. Fisica S, 2007, 53(5): 18-22.
ANISIMOV V I, ARYASETIAWAN F, LICHTENSTEIN A I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method [J]. J. Phys.: Condens. Matter, 1997, 9(4): 767-808. doi: 10.1088/0953-8984/9/4/002http://dx.doi.org/10.1088/0953-8984/9/4/002
SINGH B P, PARCHUR A K, NINGTHOUJAM R S, et al. Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions [J]. Phys. Chem. Chem. Phys., 2014, 16(41): 22665-22676. doi: 10.1039/c4cp02949fhttp://dx.doi.org/10.1039/c4cp02949f
SINGH S K, KUMAR K, RAI S B. Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry [J]. Sens. Actuators A: Phys., 2009, 149(1): 16-20. doi: 10.1016/j.sna.2008.09.019http://dx.doi.org/10.1016/j.sna.2008.09.019
YAO Y H, XU C, ZHENG Y, et al. Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field [J]. J. Mater. Sci., 2016, 51(11): 5460-5468. doi: 10.1007/s10853-016-9849-zhttp://dx.doi.org/10.1007/s10853-016-9849-z
XU W, XU S, ZHU Y S, et al. Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4∶Yb,Er nano-film [J]. Nanoscale, 2014, 4(22): 6971-6973.
LI G G, SHANG M M, GENG D L, et al. Multiform La2O3∶Yb3+/Er3+/Tm3+ submicro-/microcrystals derived by hydrothermal process: morphology control and tunable upconversion luminescence properties [J]. CrystEngComm, 2012, 14(6): 2100-2111. doi: 10.1039/c2ce06248hhttp://dx.doi.org/10.1039/c2ce06248h
LIANG Y J, CHUI P F, SUN X N, et al. Hydrothermal synthesis and upconversion luminescent properties of YVO4∶Yb3+,Er3+ nanoparticles [J]. J. Alloys Compd., 2013, 552: 289-293. doi: 10.1016/j.jallcom.2012.10.132http://dx.doi.org/10.1016/j.jallcom.2012.10.132
XU W, GAO X Y, ZHENG L J, et al. Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor [J]. Appl. Phys. Express, 2012, 5(7): 072201-1-3. doi: 10.1143/apex.5.072201http://dx.doi.org/10.1143/apex.5.072201
XU W, ZHANG Z G, CAO W W. Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+ codoped CaWO4 [J]. Opt. Lett., 2012, 37(23): 4865-4867. doi: 10.1364/ol.37.004865http://dx.doi.org/10.1364/ol.37.004865
XU W, ZHAO H, LI Y X, et al. Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4 [J]. Sens. Actuators B: Chem., 2013, 188: 1096-1100. doi: 10.1016/j.snb.2013.07.094http://dx.doi.org/10.1016/j.snb.2013.07.094
CAO B S, HE Y Y, FENG Z Q, et al. Optical temperature sensing behavior of enhanced green upconversion emissions from Er-Mo∶Yb2Ti2O7 nanophosphor [J]. Sens. Actuators B: Chem., 2011, 159(1): 8-11. doi: 10.1016/j.snb.2011.05.018http://dx.doi.org/10.1016/j.snb.2011.05.018
WANG X F, LIU Q, CAI P Q, et al. Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics [J]. Opt. Express, 2016, 24(16): 17792-17804. doi: 10.1364/oe.24.017792http://dx.doi.org/10.1364/oe.24.017792
WANG X F, LIU Q, BU Y Y, et al. Optical temperature sensing of rare-earth ion doped phosphors [J]. RSC Adv., 2015, 5(105): 86219-86236. doi: 10.1039/c5ra16986khttp://dx.doi.org/10.1039/c5ra16986k
LI L, TANG X H, WU Z J, et al. Simultaneously tuning emission color and realizing optical thermometry via efficient Tb3+→Eu3+ energy transfer in whitlockite-type phosphate multifunctional phosphors [J]. J. Alloys Compd., 2019, 780: 266-275. doi: 10.1016/j.jallcom.2018.11.378http://dx.doi.org/10.1016/j.jallcom.2018.11.378
TANG J, DU P, LI W P. et al. Boosted thermometric performance in NaGdF4∶Er3+/Yb3+ upconverting nanorods by Fe3+ ions doping for contactless nanothermometer based on thermally and non-thermally coupled levels [J]. J. Lumin., 2020, 224: 117296. doi: 10.1016/j.jlumin.2020.117296http://dx.doi.org/10.1016/j.jlumin.2020.117296
JIA M C, SUN Z, XU H Y, et al. An ultrasensitive luminescent nanothermometer in the first biological window based on phonon-assisted thermal enhancing and thermal quenching [J]. J. Mater. Chem. C, 2020, 8(44): 15603-15608. doi: 10.1039/d0tc04082ghttp://dx.doi.org/10.1039/d0tc04082g
JIA M C, SUN Z, ZHANG M X, et al. What determines the performance of lanthanide-based ratiometric nanothermometers? [J]. Nanoscale, 2020, 12(40): 20776-20785. doi: 10.1039/d0nr05035khttp://dx.doi.org/10.1039/d0nr05035k
周慧丽, 吴锋, 张志宏, 等. Lu2O3∶Er3+/Yb3+荧光材料的上转换发光及其温度传感特性 [J]. 发光学报, 2022, 42(2): 192-200. doi: 10.37188/cjl.20210363http://dx.doi.org/10.37188/cjl.20210363
ZHOU H L, WU F, ZHANG Z H, et al. Upconversion luminescence and temperature sensing characteristics of Lu2O3∶Er3+/Yb3+ phosphor [J]. Chin. J. Lumin., 2022, 42(2): 192-200. (in Chinese). doi: 10.37188/cjl.20210363http://dx.doi.org/10.37188/cjl.20210363
金叶, 李坤, 罗旭, 等. Sc2(WO4)3∶Er3+/Yb3+的上转换发光及其温度传感特性 [J]. 发光学报, 2021, 42(1): 91-97. doi: 10.37188/cjl.20200326http://dx.doi.org/10.37188/cjl.20200326
JIN Y, LI K, LUO X, et al. Upconversion luminescence and temperature sensing properties for Sc2(WO4)3∶Er3+/Yb3+ [J]. Chin. J. Lumin., 2021, 42(1): 91-97. (in Chinese). doi: 10.37188/cjl.20200326http://dx.doi.org/10.37188/cjl.20200326
WANG N, FU Z L, WEI Y L, et al. Investigation for the upconversion luminescence and temperature sensing mechanism based on BiPO4∶Yb3+, RE3+(RE3+=Ho3+, Er3+ and Tm3+) [J]. J. Alloys Compd., 2019, 772: 371-380. doi: 10.1016/j.jallcom.2018.09.070http://dx.doi.org/10.1016/j.jallcom.2018.09.070
LIU X, LEI R, HUANG F F, et al. Dependence of upconversion emission and optical temperature sensing behavior on excitation power in Er3+/Yb3+ co-doped BaMoO4 phosphors [J]. J. Lumin., 2019, 210: 119-127. doi: 10.1016/j.jlumin.2019.01.065http://dx.doi.org/10.1016/j.jlumin.2019.01.065
WEI W, JIAO J Q, LIU Y, et al. Effect of the Fe3+ concentration on the upconversion luminescence in NaGdF4∶Yb3+, Er3+ nanorods prepared by a hydrothermal method [J]. J. Mater. Sci., 2019, 54(20): 13200-13207. doi: 10.1007/s10853-019-03818-9http://dx.doi.org/10.1007/s10853-019-03818-9
0
浏览量
160
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构