浏览全部资源
扫码关注微信
1.太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
2.山西⁃浙大先进材料与化学工程研究所, 山西 太原 030024
3.电子科技大学光电信息学院 电子薄膜与集成器件国家重点实验室, 四川 成都 610054
[ "崔江峰(1995-),男,河北沧州人,硕士研究生,2018年于河北科技大学获得学士学位,主要从事有机光电材料与器件的研究。Email: 1689813420@qq. com" ]
[ "孙静(1987-),女,山东潍坊人,博士,讲师,2016年于太原理工大学获得博士学位,主要从事有机光电功能材料的研究。Email: sunjing@tyut.edu.cn" ]
[ "王华(1977-),男,山西平定人,博士,教授,博士生导师,2007 年于太原理工大学获得博士学位,主要从事有机半导体光电材料与器件的研究 Email: wanghua001@tyut.edu.cn" ]
纸质出版日期:2022-07-05,
收稿日期:2022-03-18,
修回日期:2022-04-05,
扫 描 看 全 文
崔江峰,孙静,王国良等.通过拓展D⁃π⁃A结构中的π桥实现高效紫蓝光有机发光器件(CIEy=0.046)[J].发光学报,2022,43(07):1102-1113.
CUI Jiang-feng,SUN Jing,WANG Guo-liang,et al.Achieving Efficient Violet-blue Organic Light Emitting Devices (CIEy=0.046) by Extending π-conjugation in D-π-A Structure[J].Chinese Journal of Luminescence,2022,43(07):1102-1113.
崔江峰,孙静,王国良等.通过拓展D⁃π⁃A结构中的π桥实现高效紫蓝光有机发光器件(CIEy=0.046)[J].发光学报,2022,43(07):1102-1113. DOI: 10.37188/CJL.20220093.
CUI Jiang-feng,SUN Jing,WANG Guo-liang,et al.Achieving Efficient Violet-blue Organic Light Emitting Devices (CIEy=0.046) by Extending π-conjugation in D-π-A Structure[J].Chinese Journal of Luminescence,2022,43(07):1102-1113. DOI: 10.37188/CJL.20220093.
紫蓝光有机发光材料在全彩显示和照明领域具有广阔的应用前景。但是该类材料需要宽能隙,因此开发高效的紫蓝色材料是一项巨大的挑战。本文利用10H⁃吩噻嗪5,5⁃二氧化物(2OPTZ)作为弱受体、N⁃苯基⁃2⁃萘胺(PNA)作为供体,设计合成了两个具有D⁃π⁃A型结构的紫蓝色材料,命名为2OPTZ⁃PNA和2OPTZ⁃BP⁃PNA。通过延长给受体之间的π共轭长度,使局域态和电荷转移态被优化,并且薄膜中的绝对量子产率从14%提高到33%。此外,利用2OPTZ⁃BP⁃PNA制备的非掺杂器件呈现紫蓝光(436 nm)发射,半峰全宽为54 nm,色坐标为(0.155,0.046),外量子效率为4.1%。鉴于此,本文提供了一种制备高质量紫蓝发光材料的有效策略。
Organic violet-blue luminescent materials have exhibited great potential in full-color displaying and lighting fields. However, it is a huge challenge to develop efficient violet-blue emitters because of the inherently wide energy gap. In this work, two violet-blue emitters with donor (D)-π-acceptor (A) type using 10H-phenothiazine 5,5-dioxide (2OPTZ) as a weak acceptor and N-(2-naphthyl) aniline (PNA) as the donor, namely 2OPTZ-PNA and 2OPTZ-BP-PNA, were designed and synthesized. By extending π-conjugation length between donor and acceptor, local excited states and charge transfer excited states were adjusted, and absolute photoluminescence quantum yields (PLQYs) values in the evaporated film increased from 14% to 33%. Notably, non-doped device based 2OPTZ-BP-PNA exhibits violet-blue light at 436 nm with a narrow full width at half-maximum (FWHM) of 54 nm, Commission Internationale de l’Eclairage (CIE) coordinates of (0.155, 0.046) and external quantum efficiency (EQE) of 4.1%. Given this, our results provide an efficient design strategy for the high-quality violet-blue luminescent materials.
有机发光二极管紫蓝色二氧化吩噻嗪D-π-A结构π共轭长度
organic light-emitting diodes(OLED)violet-bluephenothiazine dioxideD-π-A structureπ-conjugation length
LIN C W,HAN P B,XIAO S,et al. Efficiency breakthrough of fluorescence OLEDs by the strategic management of “hot excitons” at highly lying excitation triplet energy levels [J]. Adv. Funct. Mater., 2021,31(48):2106912-1-8. doi: 10.1002/adfm.202106912http://dx.doi.org/10.1002/adfm.202106912
XU R P,LI Y Q,TANG J X. Recent advances in flexible organic light-emitting diodes [J]. J. Mater. Chem. C, 2016,4 (39):9116-9142. doi: 10.1039/c6tc03230chttp://dx.doi.org/10.1039/c6tc03230c
YANG Z Y,MAO Z,XIE Z L,et al. Recent advances in organic thermally activated delayed fluorescence materials [J]. Chem. Soc. Rev., 2017,46(3):915-1016. doi: 10.1039/c6cs00368khttp://dx.doi.org/10.1039/c6cs00368k
GUO X M,YUAN P S,FAN J Z,et al. Unraveling the important role of high-lying triplet-lowest excited singlet transitions in achieving highly efficient deep-blue AIE-based OLEDs [J]. Adv. Mater., 2021,33(11):2006953-1-8. doi: 10.1002/adma.202006953http://dx.doi.org/10.1002/adma.202006953
贾钧森,王飞,赵波,等. D-π-A-π-D型小分子红光材料的制备及其性能 [J]. 发光学报, 2020,41(1):9-15. doi: 10.3788/fgxb20204101.0009http://dx.doi.org/10.3788/fgxb20204101.0009
JIA J S,WANG F,ZHAO B,et al. Design,synthesis and properties of D-π-A-π-D type organic red light luminogens [J]. Chin. J. Lumin., 2020,41(1):9-15. (in Chinese). doi: 10.3788/fgxb20204101.0009http://dx.doi.org/10.3788/fgxb20204101.0009
ZHANG Y M,WANG Y F,SONG J,et al. Near-infrared emitting materials via harvesting triplet excitons:molecular design,properties,and application in organic light emitting diodes [J]. Adv. Opt. Mater., 2018,6(18):1800466-1-19. doi: 10.1002/adom.201800466http://dx.doi.org/10.1002/adom.201800466
CHEN W C,YUAN Y,NI S F,et al. Achieving efficient violet-blue electroluminescence with CIEy <0.06 and EQE>6% from naphthyl-linked phenanthroimidazole-carbazole hybrid fluorophores [J]. Chem. Sci., 2017,8(5):3599-3608. doi: 10.1039/c6sc05619ahttp://dx.doi.org/10.1039/c6sc05619a
CHEN Z,LIU X K,ZHENG C J,et al. High performance exciplex-based fluorescence-phosphorescence white organic light-emitting device with highly simplified structure [J]. Chem. Mater., 2015,27(15):5206-5211. doi: 10.1021/acs.chemmater.5b01188http://dx.doi.org/10.1021/acs.chemmater.5b01188
CHOU H H,CHEN Y H,HSU H P,et al. Synthesis of diimidazolylstilbenes as n-type blue fluorophores:alternative dopant materials for highly efficient electroluminescent devices [J]. Adv. Mater., 2012,24(43):5867-5871. doi: 10.1002/adma.201202222http://dx.doi.org/10.1002/adma.201202222
SUN J,JIA J S,ZHAO B,et al. A purely organic D-π-A-π-D emitter with thermally activated delayed fluorescence and room temperature phosphorescence for near-white OLED [J]. Chin. Chem. Lett., 2021,32(4):1367-1371. doi: 10.1016/j.cclet.2020.09.060http://dx.doi.org/10.1016/j.cclet.2020.09.060
CHEN W C,WU G F,YUAN Y,et al. A meta-molecular tailoring strategy towards an efficient violet-blue organic electroluminescent material [J]. RSC Adv., 2015,5(23):18067-18074. doi: 10.1039/c4ra16954ahttp://dx.doi.org/10.1039/c4ra16954a
SHINAR J,SHINAR R. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors:an overview [J]. J. Phys. D:Appl. Phys., 2008,41(13):133001-1-26. doi: 10.1088/0022-3727/41/13/133001http://dx.doi.org/10.1088/0022-3727/41/13/133001
TONGE C M,ZENG J J,ZHAO Z J,et al. Bis (hexamethylazatriangulene)sulfone:a high-stability deep blue-violet fluorophore with 100% quantum yield and CIEy < 0.07 [J]. J. Mater. Chem. C, 2020,8(15):5150-5155. doi: 10.1039/c9tc05938ehttp://dx.doi.org/10.1039/c9tc05938e
GAO Z,LIU Y L,WANG Z M,et al. High-efficiency violet-light-emitting materials based on phenanthro[9,10-d]imidazole [J]. Chem. Eur. J., 2013,19(8):2602-2605. doi: 10.1002/chem.201203335http://dx.doi.org/10.1002/chem.201203335
THAKARE D S,OMANWAR S K,MUTHAL P L,et al. UV-emitting phosphors:synthesis,photoluminescence and applications [J]. Phys. Status Solidi A, 2004, 201(3):574-581. doi: 10.1002/pssa.200306720http://dx.doi.org/10.1002/pssa.200306720
LY K T,CHEN-CHENG R W,LIN H W,et al. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance [J]. Nat. Photonics, 2017,11(1):63-68. doi: 10.1038/nphoton.2016.230http://dx.doi.org/10.1038/nphoton.2016.230
IM Y,BYUN S Y,KIM J H,et al. Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes [J]. Adv. Funct. Mater., 2017,27(13):1603007-1-24. doi: 10.1002/adfm.201603007http://dx.doi.org/10.1002/adfm.201603007
WANG Z Q,YANG T T,DONG S F,et al. Anthracene and carbazole based asymmetric fluorescent materials for high-efficiency deep-blue non-doped organic light emitting devices with CIEy=0.06 [J]. Dyes Pigments, 2022,199:110047. doi: 10.1016/j.dyepig.2021.110047http://dx.doi.org/10.1016/j.dyepig.2021.110047
WANG S M,ZHANG H Y,ZHANG B H,et al. Towards high-power-efficiency solution-processed OLEDs:material and device perspectives [J]. Mater. Sci. Eng.:R:Rep., 2020,140:100547-1-61. doi: 10.1016/j.mser.2020.100547http://dx.doi.org/10.1016/j.mser.2020.100547
HAN P B,LIN C W,MA D G,et al. Violet-blue emitters featuring aggregation-enhanced emission characteristics for nondoped OLEDs with CIEy smaller than 0.046 [J]. ACS Appl. Mater. Interfaces, 2020,12(41):46366-46372. doi: 10.1021/acsami.0c12722http://dx.doi.org/10.1021/acsami.0c12722
XIA G Q,QU C,ZHU Y L,et al. A TADF emitter featuring linearly arranged spiro-donor and spiro-acceptor groups:efficient nondoped and doped deep-blue OLEDs with CIEy <0.1 [J]. Angew. Chem. Int. Ed., 2021,60(17):9598-9603. doi: 10.1002/anie.202100423http://dx.doi.org/10.1002/anie.202100423
卢国婧,廖小青,李璐,等. 基于扭曲A-π-D-π-A构型的蓝色荧光材料的π-共轭桥与光物理特性间的关系 [J]. 发光学报, 2019,40(11):1334-1347. doi: 10.3788/fgxb20194011.1334http://dx.doi.org/10.3788/fgxb20194011.1334
LU G J,LIAO X Q,LI L,et al. Relationship between π-conjugated bridge and photophysical properties of blue light-emitting fluorescent materials with twisting A-π-D-π-A configuration [J]. Chin. J. Lumin., 2019,40(11):1334-1347.(in English). doi: 10.3788/fgxb20194011.1334http://dx.doi.org/10.3788/fgxb20194011.1334
HAN C M,ZHAO F C,ZHANG Z,et al. Constructing low-triplet-energy hosts for highly efficient blue PHOLEDs:controlling charge and exciton capture in doping systems [J]. Chem. Mater., 2013,25(24):4966-4976. doi: 10.1021/cm403160phttp://dx.doi.org/10.1021/cm403160p
FISHER A L,LINTON K E,KAMTEKAR K T,et al. Efficient deep-blue electroluminescence from an ambipolar fluorescent emitter in a single-active-layer device [J]. Chem. Mater., 2011,23(7):1640-1642. doi: 10.1021/cm103314thttp://dx.doi.org/10.1021/cm103314t
RAJAMALLI P,CHEN D Y,SURESH S M,et al. Planar and rigid pyrazine-based TADF emitter for deep blue bright organic light-emitting diodes [J]. Eur. J. Org. Chem., 2021,2021(16):2285-2293. doi: 10.1002/ejoc.202100086http://dx.doi.org/10.1002/ejoc.202100086
ZHANG J,YE H R,JIN Y X,et al. Recent progress in near-infrared organic electroluminescent materials [J]. Top. Curr. Chem., 2022,380(1):6-1-40. doi: 10.1007/s41061-021-00357-3http://dx.doi.org/10.1007/s41061-021-00357-3
OUYANG X H,LI X L,ZHANG X Y,et al. Effective management of intramolecular charge transfer to obtain from blue to violet-blue OLEDs based on a couple of phenanthrene isomers [J]. Dyes Pigments, 2015,122:264-271. doi: 10.1016/j.dyepig.2015.06.036http://dx.doi.org/10.1016/j.dyepig.2015.06.036
LI Z Q,LI C L,XU Y C,et al. Nonsymmetrical connection of two identical building blocks:constructing donor-acceptor molecules as deep blue emitting materials for efficient organic emitting diodes [J]. J. Phys. Chem. Lett., 2019,10(4):842-847. doi: 10.1021/acs.jpclett.9b00300http://dx.doi.org/10.1021/acs.jpclett.9b00300
CHEN S,ZHANG C Y,XU H. Achieving host-free near-ultraviolet electroluminescence via electronic state engineering with phosphine oxide [J]. Chem. Eng. J., 2022,429:132327. doi: 10.1016/j.cej.2021.132327http://dx.doi.org/10.1016/j.cej.2021.132327
SHI J J,XU L,CHEN C,et al. Efficient and color-purity blue electroluminescence by manipulating the coupling forms of D-A hybrids with phenothiazine as the strong donor [J]. Dyes Pigments, 2019,160:962-970. doi: 10.1016/j.dyepig.2018.08.055http://dx.doi.org/10.1016/j.dyepig.2018.08.055
CHEN Z,HO C L,WANG L Q,et al. Single-molecular white-light emitters and their potential WOLED applications [J]. Adv. Mater., 2020,32(11):1903269-1-45. doi: 10.1002/adma.201903269http://dx.doi.org/10.1002/adma.201903269
WEI J B,LIANG B Y,DUAN R H,et al. Induction of strong long-lived room-temperature phosphorescence of N-Phenyl-2-naphthylamine molecules by confinement in a crystalline dibromobiphenyl matrix [J]. Angew. Chem. Int. Ed., 2016,55(50):15589-15593. doi: 10.1002/anie.201607653http://dx.doi.org/10.1002/anie.201607653
XIANG S P,HUANG Z,SUN S Q,et al. Highly efficient non-doped OLEDs using aggregation-induced delayed fluorescence materials based on 10-phenyl-10H-phenothiazine 5,5-dioxide derivatives [J]. J. Mater. Chem. C, 2018,6(42):11436-11443. doi: 10.1039/c8tc03648ahttp://dx.doi.org/10.1039/c8tc03648a
ROUT Y,MONTANARI C,PASCIUCCO E,et al. Tuning the fluorescence and the intramolecular charge transfer of phenothiazine dipolar and quadrupolar derivatives by oxygen functionalization [J]. J. Am. Chem. Soc., 2021,143(26):9933-9943. doi: 10.1021/jacs.1c04173http://dx.doi.org/10.1021/jacs.1c04173
YAO L,SUN S H,XUE S F,et al. Aromatic S-heterocycle and fluorene derivatives as solution-processed blue fluorescent emitters:structure-property relationships for different sulfur oxidation states [J]. J. Phys. Chem. C, 2013,117(27):14189-14196. doi: 10.1021/jp403463khttp://dx.doi.org/10.1021/jp403463k
GAO Y,ZHANG S T,PAN Y Y,et al. Hybridization and de-hybridization between the locally-excited (LE) state and the charge-transfer (CT) state:a combined experimental and theoretical study [J]. Phys. Chem. Chem. Phys., 2016,18(35):24176-24184. doi: 10.1039/c6cp02778dhttp://dx.doi.org/10.1039/c6cp02778d
HOU M N,WANG H,MIAO Y Q,et al. Highly efficient deep-blue electroluminescence from a A‑π‑D‑π‑A structure based fluoresence material with exciton utilizing efficiency above 25% [J]. ACS Appl. Energy Mater., 2018,1(7):3243-3254. doi: 10.1021/acsaem.8b00461http://dx.doi.org/10.1021/acsaem.8b00461
LI Y C,LI X L,CAI X Y,et al. Deep blue fluorophores incorporating sulfone-locked triphenylamine:the key for highly efficient fluorescence-phosphorescence hybrid white OLEDs with simplified structure [J]. J. Mater. Chem. C, 2015,3(27):6986-6996. doi: 10.1039/c5tc01373ahttp://dx.doi.org/10.1039/c5tc01373a
SHOER L E,EATON S W,MARGULIES E A,et al. Photoinduced electron transfer in 2,5,8,11-tetrakis-donor-substituted Perylene-3,4:9,10-bis (dicarboximides) [J]. J. Phys. Chem. B, 2015,119(24):7635-7643. doi: 10.1021/jp511624shttp://dx.doi.org/10.1021/jp511624s
YU M X,ZHU X Y,ZENG J J,et al. Comparative study on the impact of through-space charge transfer over the electroluminescence performance of delayed fluorescence molecules [J]. J. Mater. Chem. C, 2021,9(41):14808-14814. doi: 10.1039/d1tc03564ahttp://dx.doi.org/10.1039/d1tc03564a
ZHANG Y,LAI S L,TONG Q X,et al. High efficiency nondoped deep-blue organic light emitting devices based on imidazole-π-triphenylamine derivatives [J]. Chem. Mater., 2012,24(1):61-70. doi: 10.1021/cm201789uhttp://dx.doi.org/10.1021/cm201789u
TANG X Y,SHAN T,BAI Q,et al. Efficient deep-blue electroluminescence based on phenanthroimidazole-dibenzothiophene derivatives with different oxidation states of the sulfur atom [J]. Chem. Asian J., 2017,12(5):552-560. doi: 10.1002/asia.201601626http://dx.doi.org/10.1002/asia.201601626
DU C Y,LIU F T,LIU H,et al. Non-doped organic light-emitting diodes based on phenanthroimidazole-triphenylamine derivatives with a low efficiency roll-off of 9% at a high luminance of 10 000 cd·m-2 [J]. J. Mater. Chem. C, 2020,8(41):14446-14452. doi: 10.1039/d0tc03379khttp://dx.doi.org/10.1039/d0tc03379k
0
浏览量
210
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构