浏览全部资源
扫码关注微信
1.中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
2.中国科学院大学, 北京 100049
[ "许晨煜(1998-),男,陕西咸阳人,硕士研究生,2019年于四川大学获得学士学位,主要从事稀土掺杂硫系玻璃光纤材料的研究。" ]
纸质出版日期:2022-06-05,
收稿日期:2022-03-15,
修回日期:2022-03-27,
扫 描 看 全 文
许晨煜,崔健,许彦涛等.用于中红外光纤激光器的高Pr3+掺杂硒化物硫系玻璃和光纤制备及其光谱特性[J].发光学报,2022,43(06):851-8611.
XU Chen-yu,CUI Jian,XU Yan-tao,et al.Fabrication and Spectroscopic Properties of Heavily Pr3+ Doped Selenide Chalcogenide Glass and Fiber for Mid-infrared Fiber Laser[J].Chinese Journal of Luminescence,2022,43(06):851-861.
许晨煜,崔健,许彦涛等.用于中红外光纤激光器的高Pr3+掺杂硒化物硫系玻璃和光纤制备及其光谱特性[J].发光学报,2022,43(06):851-8611. DOI: 10.37188/CJL.20220088.
XU Chen-yu,CUI Jian,XU Yan-tao,et al.Fabrication and Spectroscopic Properties of Heavily Pr3+ Doped Selenide Chalcogenide Glass and Fiber for Mid-infrared Fiber Laser[J].Chinese Journal of Luminescence,2022,43(06):851-861. DOI: 10.37188/CJL.20220088.
为了研发用于3~5 μm波段光纤激光器的增益介质,制备了重量百分比为0~0.4%不同浓度Pr
3+
离子掺杂的Ge
12
As
20.8
Ga
4
Se
63.2
硒化物硫系玻璃。通过多级棒管法,重量百分比为0.2%的Pr
3+
离子掺杂玻璃被成功拉制成阶跃型双包层光纤,损耗最低为2.95 dB/m(位于6.58 μm处)。采用电子探针显微分析(EPMA)、X射线衍射(XRD)、差示扫描量热(DSC)、场发射透射电子显微镜(FE⁃TEM)、透射光谱和中红外荧光光谱分析了玻璃中Pr
3+
离子的分散性、杂质含量以及Pr
3+
离子引入引起的热、光学性质变化。通过玻璃的吸收和发射光谱并结合Judd-Ofelt理论,计算了Judd-Ofelt强度参数、辐射跃迁几率、荧光寿命、荧光分支比和受激发射截面。这种硒化硫系玻璃具有较高的Pr
3+
离子溶解度和中红外发光特性、良好的热稳定性和成纤性能,表明其具有作为中红外激光工作介质的潜力。
In order to develop a high gain medium for fiber lasers operating at 3-5 μm waveband, 0-0.4%(in weight) Pr
3+
ions doped Ge
12
As
20.8
Ga
4
Se
63.2
selenide chalcogenide glasses were prepared and the 0.2%(in weight) Pr
3+
ions doped one was successfully drawn into step-index double-cladding fiber with the lowest loss of 2.95 dB/m@6.58 μm by a multistage rod-in-tube method. The electron-probe measure microanalysis(EPMA), X-ray diffraction(XRD), differential scanning calorimeter(DSC), field emission transmission electron microscope(FE-TEM), transmission and mid-infrared fluorescence spectra were carried out to analyze the dispersion of Pr
3+
ions in glass, the impurity contents,thermal and optical changes caused by the Pr
3+
ions’ introduction. By analyzing the absorption and emission measurements of the serial glasses with the Judd-Ofelt theory, the Judd-Ofelt strength parameters, transition probabilities, exited state lifetime, branching ratios, and emission cross-sections were also calculated. This selenide chalcogenide glass has high Pr
3+
ions’ solubility and emission characteristic, good thermal stability and fiber forming performance, indicating that it has potential to be used as mid-infrared laser working medium.
硫系玻璃稀土离子光谱学中红外荧光红外光纤
chalcogenide glassrare-earth ionsspectroscopymid-infrared fluorescenceinfrared fiber
WILLER U,SARAJI M,KHORSANDI A,et al. Near- and mid-infrared laser monitoring of industrial processes,environment and security applications [J]. Opt. Lasers Eng., 2006,44(7):699-710. doi: 10.1016/j.optlaseng.2005.04.015http://dx.doi.org/10.1016/j.optlaseng.2005.04.015
SEDDON A B. Chalcogenide glasses:a review of their preparation,properties and applications [J]. J. Non⁃Cryst. Solids,1995,184:44-50. doi: 10.1016/0022-3093(94)00686-5http://dx.doi.org/10.1016/0022-3093(94)00686-5
HEO J,SANGHERA J S,MACKENZIE J D. Chalcohalide glasses for infrared fiber optics [J]. Opt. Eng., 1991,30(4):470-479. doi: 10.1117/12.55824http://dx.doi.org/10.1117/12.55824
WAYNANT R W,ILEV I K,GANNOT I. Mid-infrared laser applications in medicine and biology [J]. Philos. Trans. Roy. Soc. A-Math. Phys. Eng. Sci., 2001,359(1780):635-644. doi: 10.1098/rsta.2000.0747http://dx.doi.org/10.1098/rsta.2000.0747
UEMURA O,HAYASAKA N,TOKAIRIN S,et al. Local atomic arrangement in Ge-Te and Ge-S-Te glasses [J]. J. Non⁃Cryst. Solids, 1996, 205-207:189-193. doi: 10.1016/s0022-3093(96)00376-6http://dx.doi.org/10.1016/s0022-3093(96)00376-6
SCHNEIDER J. Fluoride fibre laser operating at 3.9 μm [J]. Electron. Lett., 1995,31(15):1250-1251. doi: 10.1049/el:19950858http://dx.doi.org/10.1049/el:19950858
SCHNEIDE J,CARBONNIER C,UNRAU U B. Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength [J]. Appl. Opt., 1997,36(33):8595-8600. doi: 10.1364/ao.36.008595http://dx.doi.org/10.1364/ao.36.008595
TANG Z Q,FURNISS D,FAY M,et al. Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass [J]. Opt. Mater. Express, 2015,5(4):870-886. doi: 10.1364/ome.5.000870http://dx.doi.org/10.1364/ome.5.000870
LIU Z J,BIAN J Y,HUANG Y,et al. Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres [J]. RSC Adv., 2017,7(66):41520-41526. doi: 10.1039/c7ra05319chttp://dx.doi.org/10.1039/c7ra05319c
SOJKA L,TANG Z Q,FURNISS D,et al. Mid-infrared emission in Tb3+-doped selenide glass fiber [J]. J. Opt. Soc. Amer. B, 2017,34(3):A70-A79. doi: 10.1364/josab.34.000a70http://dx.doi.org/10.1364/josab.34.000a70
CUI J,XIAO X S,XU Y T,et al. Mid-infrared emissions of Dy3+ doped Ga-As-S chalcogenide glasses and fibers and their potential for a 4.2 μm fiber laser [J]. Opt. Mater. Express, 2018,8(8):2089-2102. doi: 10.1364/ome.8.002089http://dx.doi.org/10.1364/ome.8.002089
SÓJKA Ł,TANG Z Q,ZHU H,et al. Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+,Pr3+ and Tb3+ [J]. Opt. Mater. Express, 2012,2(11):1632-1640. doi: 10.1364/ome.2.001632http://dx.doi.org/10.1364/ome.2.001632
AITKEN B G,PONADER C W,QUIMBY R S. Clustering of rare earths in GeAs sulfide glass [J]. C. R. Chim., 2002,5(12):865-872. doi: 10.1016/s1631-0748(02)01458-3http://dx.doi.org/10.1016/s1631-0748(02)01458-3
NUNES J J,SÓJKA Ł,CRANE R W,et al. Room temperature mid-infrared fiber lasing beyond 5 µm in chalcogenide glass small-core step index fiber [J]. Opt. Lett., 2021,46(15):3504-3507. doi: 10.1364/ol.430891http://dx.doi.org/10.1364/ol.430891
HU R F,HAN J H,FENG G Y,et al. Study on the phase transition of fracture region of laser induced damage in fused glass by focused nanosecond pulse [J]. Optik, 2017,140:427-433. doi: 10.1016/j.ijleo.2017.02.053http://dx.doi.org/10.1016/j.ijleo.2017.02.053
ZHU L,YANG D D,WANG L L,et al. Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing [J]. Opt. Mater., 2018,85:220-225. doi: 10.1016/j.optmat.2018.08.041http://dx.doi.org/10.1016/j.optmat.2018.08.041
SHIRYAEV V S,VELMUZHOV A P,TANG Z Q,et al. Preparation of high purity glasses in the Ga⁃Ge⁃As⁃Se system [J]. Opt. Mater., 2014,37:18-23. doi: 10.1016/j.optmat.2014.04.021http://dx.doi.org/10.1016/j.optmat.2014.04.021
SHIRYAEV V S,KARAKSINA E V,CHURBANOV M F,et al. Special pure germanium-rich Ga-Ge-As-Se glasses for active mid-IR fiber optics [J]. Mater. Res. Bull., 2018,107:430-437. doi: 10.1016/j.materresbull.2018.08.009http://dx.doi.org/10.1016/j.materresbull.2018.08.009
JUDD B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962,127(3):750-761. doi: 10.1103/physrev.127.750http://dx.doi.org/10.1103/physrev.127.750
OFELT G S. Intensities of crystal spectra of rare‐earth ions [J]. J. Chem. Phys., 1962,37(3):511-520. doi: 10.1063/1.1701366http://dx.doi.org/10.1063/1.1701366
TANABE S,OHYAGI T,SOGA N,et al. Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses [J]. Phys. Rev. B Condens. Matter, 1992,46(6):3305-3310. doi: 10.1103/physrevb.46.3305http://dx.doi.org/10.1103/physrevb.46.3305
GUO Q,XU Y T,GUO H T,et al. Effect of iodine(I2) on structural,thermal and optical properties of Ge-Sb-S chalcohalide host glasses and ones doped with Dy [J]. J. Non⁃Cryst. Solids, 2017,464:81-88. doi: 10.1016/j.jnoncrysol.2017.03.024http://dx.doi.org/10.1016/j.jnoncrysol.2017.03.024
WANG Z X,GUO H T,XIAO X S,et al. Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication [J]. J. Alloys Compd., 2017,692:1010-1017. doi: 10.1016/j.jallcom.2016.09.085http://dx.doi.org/10.1016/j.jallcom.2016.09.085
CZAJA M,BODYŁ S,GABRYŚ-PISARSKA J,et al. Applications of Judd-Ofelt theory to praseodymium and samarium ions in phosphate glass [J]. Opt. Mater., 2009,31(12):1898-1901. doi: 10.1016/j.optmat.2008.12.018http://dx.doi.org/10.1016/j.optmat.2008.12.018
ZHOU B,TAO L L,TSANG Y H,et al. Superbroadband near-IR photoluminescence from Pr3+-doped fluorotellurite glasses [J]. Opt. Express, 2012,20(4):3803-3813. doi: 10.1364/oe.20.003803http://dx.doi.org/10.1364/oe.20.003803
BINNEMANS K,VERBOVEN D,GÖRLLER-WALRAND C,et al. Absorption and magnetic circular dichroism spectra of praseodymium doped fluorozirconate(ZBLAN) glass [J]. J. Alloys Compd., 1997,250(1-2):321-325. doi: 10.1016/s0925-8388(96)02723-5http://dx.doi.org/10.1016/s0925-8388(96)02723-5
SUBRAMANYAM Y,MOORTHY L R,LAKSHMAN S V J. Spectroscopic investigations of the Pr(Ⅲ) ion in certain ternary sulfate glasses [J]. J. Less⁃Common Metals, 1989,148(1-2):363-368. doi: 10.1016/0022-5088(89)90052-0http://dx.doi.org/10.1016/0022-5088(89)90052-0
QUIMBY R S,AITKEN B G. Effect of population bottlenecking in Pr fiber amplifiers with low-phonon hosts [J]. IEEE Photonics Technol. Lett., 1999,11(3):313-315. doi: 10.1109/68.748219http://dx.doi.org/10.1109/68.748219
SUJECKI S,SOJKA L,BERES-PAWLIK E,et al. Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber [J]. J. Lumin., 2019,209:14-20. doi: 10.1016/j.jlumin.2019.01.023http://dx.doi.org/10.1016/j.jlumin.2019.01.023
SAKR H,TANG Z,FURNISS D,et al. Towards mid-infrared fiber-lasers:rare earth ion doped,indium-containing,selenide bulk glasses and fiber [C]. Proceedings Volume 8938,Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications ⅩⅣ, San Francisco,California,United States, 2014. doi: 10.1117/12.2039405http://dx.doi.org/10.1117/12.2039405
FAN T Y,KOKTA M R. End-pumped Nd∶LaF3 and Nd∶LaMgAl11O19 lasers [J]. IEEE J. Quantum Electron., 1989,25(8):1845-1849. doi: 10.1109/3.34043http://dx.doi.org/10.1109/3.34043
0
浏览量
803
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构