浏览全部资源
扫码关注微信
1.西北师范大学 化学化工学院, 甘肃 兰州 730070
2.兰州文理学院 化工学院, 甘肃 兰州 730000
[ "杨学琴(1996-),女,甘肃会宁人,硕士研究生,2019年于兰州文理学院获得学士学位,主要从事AIE荧光探针及其在生物成像方面应用的研究。Email: 2410121332@qq.com" ]
[ "关晓琳(1979-),女,甘肃兰州人,博士,副教授,硕士生导师,2007 年于兰州大学获得博士学位,主要从事生物荧光成像探针和药物释放领域的各类量子点材料及功能AIE 聚合物的研究。Email: guanxiaolin@nwnu.edu.cn" ]
纸质出版日期:2022-06-05,
收稿日期:2022-03-10,
修回日期:2022-03-20,
扫 描 看 全 文
杨学琴,来守军,丁媛媛等.四苯乙烯类聚集诱导发光探针在生物分子检测领域的应用[J].发光学报,2022,43(06):961-985.
YANG Xue-qin,LAI Shou-jun,DING Yuan-yuan,et al.Application of Tetraphenylene Aggregation-induced Emission Probes in Field of Biomolecular Detection[J].Chinese Journal of Luminescence,2022,43(06):961-985.
杨学琴,来守军,丁媛媛等.四苯乙烯类聚集诱导发光探针在生物分子检测领域的应用[J].发光学报,2022,43(06):961-985. DOI: 10.37188/CJL.20220080.
YANG Xue-qin,LAI Shou-jun,DING Yuan-yuan,et al.Application of Tetraphenylene Aggregation-induced Emission Probes in Field of Biomolecular Detection[J].Chinese Journal of Luminescence,2022,43(06):961-985. DOI: 10.37188/CJL.20220080.
生物体内存在各类生物离子和分子,其含量变化可以反映生物体的健康情况。因此,开发用于监测生物系统中离子或分子含量的方法是非常重要的。近年来,具有聚集诱导发光(Aggregation⁃induced emission,AIE)性质的荧光材料由于其独特的光电性能及生物活性,在光电材料、化学传感、生物成像等领域展现出广泛的应用前景。目前,在具有较高荧光量子产率的聚集诱导发光分子(AIEgens)中,四苯乙烯(TPE)成为最具有代表性和常用的分子之一,具有合成简便、易功能化以及优异的AIE效应等优点。本文综述了近年来基于TPE的荧光材料在生物金属离子、生物小分子和生物大分子检测方面的研究进展,分析了基于TPE的荧光探针所面临的挑战,并对其应用前景进行了展望,以期为制备合成简单、生物相容性好、检出限低的AIE荧光探针提供参考。
There are various types of biometal ions and biomolecules in the organism and their content changes can reflect the health of living body. Therefore, it is very important to develop a detection method for monitoring the content of biometal ions or biomolecules in biological systems. In recent years, fluorescent materials with enhanced properties of aggregation-induced emission(AIE) have shown wide application prospects in the fields of optoelectronic materials, chemical sensing, and bio-imaging due to their unique optoelectronic properties and biological activities. At present, tetraphenylethylene(TPE) has become one of the most representative and commonly used molecules among aggregation-induced luminescent molecules(AIEgens) with high fluorescence quantum yield, which has the advantages of simple synthesis, easy to functionalize, and excellent AIE effect. This paper reviews the research progress of tetraphenylethylene-based fluorescent materials in the detection of biometal ions, small biomolecules and biomacromolecules in recent years. The challenges faced of fluorescent probes are analyzed and the development prospects are expected. It is expected to provide a reference for preparing and synthesizing fluorescent probes with good biocompatibility and low detection limit.
聚集诱导发光四苯乙烯生物金属离子生物小分子生物大分子
aggregation-induced emissiontetraphenylethylenebiometal ionssmall biomoleculebiomacromolecule
DING D,LI K,LIU B,et al. Bioprobes based on AIE fluorogens [J]. Acc. Chem. Res., 2013,46(11):2441-2453. doi: 10.1021/ar3003464http://dx.doi.org/10.1021/ar3003464
XIE H F,YU C J,HUANG Y L,et al. A turn-off fluorescent probe for the detection of Cu2+ based on a tetraphenylethylene-functionalized salicylaldehyde Schiff-base [J]. Mater. Chem. Front., 2020,4(5):1500-1506. doi: 10.1039/c9qm00759hhttp://dx.doi.org/10.1039/c9qm00759h
NIU G L,ZHANG R Y,SHI X J,et al. AIE luminogens as fluorescent bioprobes [J]. Trends Analyt. Chem., 2020,123:115769-1-28. doi: 10.1016/j.trac.2019.115769http://dx.doi.org/10.1016/j.trac.2019.115769
ZHAO M C,WANG M,LIU H J,et al. Continuous on-site label-free ATP fluorometric assay based on aggregation-induced emission of silole [J]. Langmuir, 2009,25(2):676-678. doi: 10.1021/la803762bhttp://dx.doi.org/10.1021/la803762b
HU F,LIU B. Organelle-specific bioprobes based on fluorogens with aggregation-induced emission(AIE) characteristics [J]. Org. Biomol. Chem., 2016,14(42):9931-9944. doi: 10.1039/C6OB01414Chttp://dx.doi.org/10.1039/C6OB01414C
LI H Y,LIN H Y,LV W X,et al. Equipment-free and visual detection of multiple biomarkers via an aggregation induced emission luminogen-based paper biosensor [J]. Biosens. Bioelectron., 2020,165:112336. doi: 10.1016/j.bios.2020.112336http://dx.doi.org/10.1016/j.bios.2020.112336
吕妍婷,王琪,朱为宏. 聚集诱导发光材料在食品安全检测中的应用 [J]. 发光学报, 2021,42(3):319-335. doi: 10.37188/CJL.20200382http://dx.doi.org/10.37188/CJL.20200382
LYU Y T,WANG Q,ZHU W H. Food safety detection using aggregation-induced emission materials [J]. Chin. J. Lumin., 2021,42(3):319-335. (in Chinese). doi: 10.37188/CJL.20200382http://dx.doi.org/10.37188/CJL.20200382
LUO J D,XIE Z L,LAM J W Y,et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chem. Commun., 2001,(18):1740-1741. doi: 10.1039/b105159hhttp://dx.doi.org/10.1039/b105159h
王嘉慧,曾晓璇,吴玥,等. 具有pH响应性能的聚集诱导发光材料制备与表征 [J]. 发光学报, 2021,42(3):311-318. doi: 10.37188/CJL.20210020http://dx.doi.org/10.37188/CJL.20210020
WANG J H,ZENG X X,WU Y,et al. Synthesis and characterization of pH-responsive material with aggregation-induced emission property [J]. Chin. J. Lumin., 2021,42(3):311-318. (in Chinese). doi: 10.37188/CJL.20210020http://dx.doi.org/10.37188/CJL.20210020
MEI J,LEUNG N L C,KWOK R T K,et al. Aggregation-induced emission:together we shine,united we soar! [J]. Chem. Rev., 2015,115(21):11718-11940. doi: 10.1021/acs.chemrev.5b00263http://dx.doi.org/10.1021/acs.chemrev.5b00263
ZHAN C,YOU X,ZHANG G X,et al. Bio-/chemosensors and imaging with aggregation-induced emission luminogens [J]. Chem. Rec., 2016,16(4):2142-2160. doi: 10.1002/tcr.201600045http://dx.doi.org/10.1002/tcr.201600045
赵思宇,张祥,卢伶,等. 具有聚集诱导发光性质的热活化延迟荧光材料综述 [J]. 材料导报, 2020,34(17):17155-17167. doi: 10.11896/cldb.20030026http://dx.doi.org/10.11896/cldb.20030026
ZHAO S Y,ZHANG X,LU L,et al. A review on thermally activated delayed fluorescent material with aggregation-induced emission property [J]. Mater. Rep., 2020,34(17):17155-17167. (in Chinese). doi: 10.11896/cldb.20030026http://dx.doi.org/10.11896/cldb.20030026
HUANG L,DAI L M. Aggregation-induced emission for highly selective and sensitive fluorescent biosensing and cell imaging [J]. J. Polym. Sci. A Polym. Chem., 2017,55(4):653-659. doi: 10.1002/pola.28447http://dx.doi.org/10.1002/pola.28447
ZHANG P S,NIE X Z,GAO M,et al. A highly selective fluorescent nanoprobe based on AIE and ESIPT for imaging hydrogen sulfide in live cells and zebrafish [J]. Mater. Chem. Front., 2017,1(5):838-845. doi: 10.1039/c6qm00223dhttp://dx.doi.org/10.1039/c6qm00223d
赵秋丽,卞洁鹏,杨庆浩,等. 聚集诱导发红光材料在生物成像领域的应用 [J]. 材料导报, 2019,33(3):522-535. doi: 10.11896/cldb.201903020http://dx.doi.org/10.11896/cldb.201903020
ZHAO Q L,BIAN J P,YANG Q H,et al. Application of aggregation-induced red emission materials in bioimaging [J]. Mater. Rep., 2019,33(3):522-535. (in Chinese). doi: 10.11896/cldb.201903020http://dx.doi.org/10.11896/cldb.201903020
GAO M,TANG B Z. AIE-based cancer theranostics [J]. Coord. Chem. Rev., 2020,402:213076-1-41. doi: 10.1016/j.ccr.2019.213076http://dx.doi.org/10.1016/j.ccr.2019.213076
张志军,康苗苗,王媛玮,等. 聚集诱导发光材料在光学诊疗中的研究进展 [J]. 发光学报, 2021,42(3):361-378. doi: 10.37188/CJL.20210029http://dx.doi.org/10.37188/CJL.20210029
ZHANG Z J,KANG M M,WANG Y W,et al. Recent advances of aggregation-induced emission materials in phototheranostics [J]. Chin. J. Lumin., 2021,42(3):361-378. (in Chinese). doi: 10.37188/CJL.20210029http://dx.doi.org/10.37188/CJL.20210029
KWOK R T K,LEUNG C W T,LAM J W Y,et al. Biosensing by luminogens with aggregation-induced emission characteristics [J]. Chem. Soc. Rev., 2015,44(13):4228-4238. doi: 10.1039/c4cs00325jhttp://dx.doi.org/10.1039/c4cs00325j
SELVARAJ M,RAJALAKSHMI K,AHN D H,et al. Tetraphenylethene-based fluorescent probe with aggregation-induced emission behavior for Hg2+ detection and its application [J]. Anal. Chim. Acta, 2021,1148:238178-1-12. doi: 10.1016/j.aca.2020.12.053http://dx.doi.org/10.1016/j.aca.2020.12.053
DONG X B,ZHANG G X,SHI J B,et al. A highly selective fluorescence turn-on detection of ClO- with 1-methyl-1,2-dihydropyridine-2-thione unit modified tetraphenylethylene [J]. Chem. Commun., 2017,53(85):11654-11657. doi: 10.1039/c7cc07092fhttp://dx.doi.org/10.1039/c7cc07092f
WANG Y L,LIU H L,CHEN Z,et al. Aggregation-induced emission enhancement(AIEE)-active tetraphenylethene (TPE)-based chemosensor for CN- [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021,245:118928. doi: 10.1016/j.saa.2020.118928http://dx.doi.org/10.1016/j.saa.2020.118928
HUANG X H,GU X G,ZHANG G X,et al. A highly selective fluorescence turn-on detection of cyanide based on the aggregation of tetraphenylethylene molecules induced by chemical reaction [J]. Chem. Commun., 2012,48(100):12195-12197. doi: 10.1039/c2cc37094hhttp://dx.doi.org/10.1039/c2cc37094h
JIANG G Y,ZHU W P,CHEN Q Q,et al. A new tetraphenylethylene based AIE sensor with light-up and tunable measuring range for adenosine triphosphate in aqueous solution and in living cells [J]. Analyst, 2017,142(23):4388-4392. doi: 10.1039/c7an01336ahttp://dx.doi.org/10.1039/c7an01336a
TONG H,HONG Y N,DONG Y Q,et al. Protein detection and quantitation by tetraphenylethene-based fluorescent probes with aggregation-induced emission characteristics [J]. J. Phys. Chem. B, 2007,111(40):11817-11823. doi: 10.1021/jp073147mhttp://dx.doi.org/10.1021/jp073147m
TESKEY G,ABRAHEM R,CAO R Q,et al. Glutathione as a marker for human disease [J]. Adv. Clin. Chem., 2018,87:141-159. doi: 10.1016/bs.acc.2018.07.004http://dx.doi.org/10.1016/bs.acc.2018.07.004
LIAO C W,HSU Y C,CHU C C,et al. Aggregation-induced emission tetraphenylethene type derivatives for blue tandem organic light-emitting diodes [J]. Org. Electron., 2019,67:279-286. doi: 10.1016/j.orgel.2018.12.025http://dx.doi.org/10.1016/j.orgel.2018.12.025
FREDERICKSON C J. Neurobiology of zinc and zinc-containing neurons [J]. Int. Rev. Neurobiol.,1989,31:145-238. doi: 10.1016/s0074-7742(08)60279-2http://dx.doi.org/10.1016/s0074-7742(08)60279-2
ASSAF S Y,CHUNG S H. Release of endogenous Zn2+ from brain tissue during activity [J]. Nature,1984,308(5961):734-736. doi: 10.1038/308734a0http://dx.doi.org/10.1038/308734a0
KUMAR V,KUMAR A,SINGH K,et al. Neurobiology of zinc and its role in neurogenesis [J]. Eur. J. Nutr., 2021,60(1):55-64. doi: 10.1007/s00394-020-02454-3http://dx.doi.org/10.1007/s00394-020-02454-3
DOU M,GONG A J,LIANG H,et al. Improvement of symptoms in a rat model of depression through combined zinc and folic acid administration via up-regulation of the Trk B and NMDA [J]. Neurosci. Lett., 2018,683:196-201. doi: 10.1016/j.neulet.2018.07.036http://dx.doi.org/10.1016/j.neulet.2018.07.036
吴红梅,何成,王健,等. 基于水解活性的Zn2+荧光探针 [J]. 发光学报, 2009,30(3):275-284. doi: 10.1088/1674-1137/33/8/010http://dx.doi.org/10.1088/1674-1137/33/8/010
WU H M,HE C,WANG J,et al. Hydrolysis-activated fluorophore system as a molecular sensor for selective detection of Zn2+ [J]. Chin. J. Lumin., 2009,30(3):275-284. (in English). doi: 10.1088/1674-1137/33/8/010http://dx.doi.org/10.1088/1674-1137/33/8/010
QUE E L,DOMAILLE D W,CHANG C J. Metals in neurobiology:probing their chemistry and biology with molecular imaging [J]. Chem. Rev., 2008,108(5):1517-1549. doi: 10.1021/cr078203uhttp://dx.doi.org/10.1021/cr078203u
XU J X,XIONG J W,QIN Y L,et al. A novel quinolinyl-tetraphenylethene-based fluorescence “turn-on” sensor for Zn2+ with a large Stokes shift and its applications for portable test strips and biological imaging [J]. Mater. Chem. Front., 2020,4(11):3338-3348. doi: 10.1039/d0qm00446dhttp://dx.doi.org/10.1039/d0qm00446d
HE X X,WANG X M,ZHANG L,et al. Sensing and intracellular imaging of Zn2+ based on affinity peptide using an aggregation induced emission fluorescence “switch-on” probe [J]. Sens. Actuators B Chem., 2018,271:289-299. doi: 10.1016/j.snb.2018.05.082http://dx.doi.org/10.1016/j.snb.2018.05.082
MENG Q H,LIU H,SEN C,et al. A novel molecular probe sensing polynuclear hydrolyzed aluminum by chelation-enhanced fluorescence [J]. Talanta, 2012,99:464-470. doi: 10.1016/j.talanta.2012.06.011http://dx.doi.org/10.1016/j.talanta.2012.06.011
DARBRE P D. Aluminium,antiperspirants and breast cancer [J]. J. Inorg. Biochem., 2005,99(9):1912-1919. doi: 10.1016/j.jinorgbio.2005.06.001http://dx.doi.org/10.1016/j.jinorgbio.2005.06.001
LIAO Z C,YANG Z Y,LI Y,et al. A simple structure fluorescent chemosensor for high selectivity and sensitivity of aluminum ions [J]. Dyes Pigm., 2013,97(1):124-128. doi: 10.1016/j.dyepig.2012.12.017http://dx.doi.org/10.1016/j.dyepig.2012.12.017
LI Y P,LIU X M,ZHANG Y H,et al. A fluorescent and colorimetric sensor for Al3+ based on a dibenzo-18-crown-6 derivative [J]. Inorg. Chem. Commun., 2013,33:6-9. doi: 10.1016/j.inoche.2013.03.020http://dx.doi.org/10.1016/j.inoche.2013.03.020
XIE H T,WU Y L,HUANG J,et al. A ratiometric fluorescent probe for aluminum ions based-on monomer/excimer conversion and its applications to real samples [J]. Talanta, 2016,151:8-13. doi: 10.1016/j.talanta.2016.01.015http://dx.doi.org/10.1016/j.talanta.2016.01.015
GUPTA V K,SHOORA S K,KUMAWAT L K,et al. A highly selective colorimetric and turn-on fluorescent chemosensor based on 1-(2-pyridylazo)-2-naphthol for the detection of aluminium(Ⅲ) ions [J]. Sens. Actuators B Chem., 2015, 209:15-24. doi: 10.1016/j.snb.2014.10.143http://dx.doi.org/10.1016/j.snb.2014.10.143
XU Z J,LIU Y N,WANG R T,et al. AIEE based “turn-on” fluorescent sensor for Al3+ ions and induced tetraphenylethene self-assemblies [J]. Org. Electron., 2020,85:105820-1-6. doi: 10.1016/j.orgel.2020.105820http://dx.doi.org/10.1016/j.orgel.2020.105820
PURI P,KUMAR G,PAUL K,et al. Self-agglomerated crystalline needles harnessing ESIPT and AIEE features for the ‘turn-on’ fluorescence detection of Al3+ ions [J]. New J. Chem., 2018,42(23):18550-18558. doi: 10.1039/c8nj03577fhttp://dx.doi.org/10.1039/c8nj03577f
GUI S L,HUANG Y Y,HU F,et al. Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on ion-induced aggregation [J]. Anal. Chem., 2015,87(3):1470-1474. doi: 10.1021/ac504153chttp://dx.doi.org/10.1021/ac504153c
XU P F,BAO Z Y,YU C Y,et al. A water-soluble molecular probe with aggregation-induced emission for discriminative detection of Al3+ and Pb2+ and imaging in seedling root of Arabidopsis [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019,223:117335-1-8. doi: 10.1016/j.saa.2019.117335http://dx.doi.org/10.1016/j.saa.2019.117335
PROHASKA J R,GYBINA A A. Intracellular copper transport in mammals [J]. J. Nutr, 2004,134(5):1003-1006. doi: 10.1093/jn/134.5.1003http://dx.doi.org/10.1093/jn/134.5.1003
JIANG N,GONG X,ZHONG T Y,et al. A highly selective and sensitive “turn-on” fluorescent probe for rapid recognition and detection of Cu2+ in aqueous solution and in living cells [J]. J. Mol. Struct., 2020,1219:128573. doi: 10.1016/j.molstruc.2020.128573http://dx.doi.org/10.1016/j.molstruc.2020.128573
NADIMETLA D N,BHOSALE S V. Tetraphenylethylene AIEgen bearing thiophenylbipyridine receptor for selective detection of copper(Ⅱ) ion [J]. New J. Chem., 2021,45(17):7614-7621. doi: 10.1039/d1nj01001hhttp://dx.doi.org/10.1039/d1nj01001h
GENG L Y,ZHAO Y,KAMYA E,et al. Turn-off/on fluorescent sensors for Cu2+ and ATP in aqueous solution based on a tetraphenylethylene derivative [J]. J. Mater. Chem. C, 2019,7(9):2640-2645. doi: 10.1039/c8tc06075dhttp://dx.doi.org/10.1039/c8tc06075d
WANG D Q,ZHOU X,MA C,et al. An amphiphilic fluorogen with aggregation-induced emission characteristic for highly sensitive and selective detection of Cu2+ in aqueous solution and biological system [J]. Arab. J. Chem., 2021,14(10):103351. doi: 10.1016/j.arabjc.2021.103351http://dx.doi.org/10.1016/j.arabjc.2021.103351
HUANG W H,REN J,YANG Y H,et al. Water-stable metal-organic frameworks with selective sensing on Fe3+ and nitroaromatic explosives,and stimuli-responsive luminescence on lanthanide encapsulation [J]. Inorg. Chem., 2019,58(2):1481-1491. doi: 10.1021/acs.inorgchem.8b02994http://dx.doi.org/10.1021/acs.inorgchem.8b02994
PETRONEK M S,SPITZ D R,BUETTNER G R,et al. Linking cancer metabolic dysfunction and genetic instability through the lens of iron metabolism [J]. Cancers, 2019,11(8):1077-1-20. doi: 10.3390/cancers11081077http://dx.doi.org/10.3390/cancers11081077
ZHANG W,LUO Y,ZHAO J,et al. tQ[14]-based AIE supramolecular network polymers as potential bioimaging agents for the detection of Fe3+ in live HeLa cells [J]. Sens. Actuators B Chem., 2022,354,131189. doi: 10.1016/j.snb.2021.131189http://dx.doi.org/10.1016/j.snb.2021.131189
ZAHEER A,MURSHED M,DE GRAND A M,et al. Optical imaging of hydroxyapatite in the calcified vasculature of transgenic animals [J]. Arterioscler. Thromb. Vasc. Biol., 2006,26(5):1132-1136. doi: 10.1161/01.atv.0000210016.89991.2ahttp://dx.doi.org/10.1161/01.atv.0000210016.89991.2a
SUI B L,LIU X L,WANG M Y,et al. A highly selective fluorescence turn-on sensor for extracellular calcium ion detection [J]. Chem. Eur. J., 2016,22(30):10351-10354. doi: 10.1002/chem.201602162http://dx.doi.org/10.1002/chem.201602162
ZHANG J D,YAN Z,WANG S,et al. Water soluble chemosensor for Ca2+ based on aggregation-induced emission characteristics and its fluorescence imaging in living cells [J]. Dyes Pigm., 2018,150:112-120. doi: 10.1016/j.dyepig.2017.11.012http://dx.doi.org/10.1016/j.dyepig.2017.11.012
WANG D Q,MA C,ZHOU X,et al. Self-dispersible fluorescent probe with aggregation-induced emission feature for sequence detection of Fe3+ and Ca2+ [J]. Colloid Interface Sci. Commun., 2021,40:100358. doi: 10.1016/j.colcom.2020.100358http://dx.doi.org/10.1016/j.colcom.2020.100358
XUAN W M,PAN R,CAO Y T,et al. A fluorescent probe capable of detecting H2S at submicromolar concentrations in cells [J]. Chem. Commun., 2012,48(86):10669-10671. doi: 10.1039/c2cc35602chttp://dx.doi.org/10.1039/c2cc35602c
PARK C M,ZHAO Y,ZHU Z H,et al. Synthesis and evaluation of phosphorodithioate-based hydrogen sulfide donors [J]. Mol. Biosyst., 2013,9(10):2430-2434. doi: 10.1039/c3mb70145jhttp://dx.doi.org/10.1039/c3mb70145j
KIMURA H. Hydrogen sulfide:its production,release and functions [J]. Amino Acids, 2011,41(1):113-121. doi: 10.1007/s00726-010-0510-xhttp://dx.doi.org/10.1007/s00726-010-0510-x
WHITEMAN M,GOODING K M,WHATMORE J L,et al. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide [J]. Diabetologia, 2010,53(8):1722-1726. doi: 10.1007/s00125-010-1761-5http://dx.doi.org/10.1007/s00125-010-1761-5
WANG X D,AN L,TIAN Q W,et al. Recent progress in H2S activated diagnosis and treatment agents [J]. RSC Adv., 2019,9(58):33578-33588. doi: 10.1039/c9ra06698ehttp://dx.doi.org/10.1039/c9ra06698e
ZHANG Y,HUANG X H,LIU W W,et al. Organic nanoparticles formed by aggregation-induced fluorescent molecules for detection of hydrogen sulfide in living cells [J]. Sci. China Chem., 2016,59(1):106-113. doi: 10.1007/s11426-015-5543-2http://dx.doi.org/10.1007/s11426-015-5543-2
REHMAN T,SHABBIR M A,INAM-UR-RAHEEM M,et al. Cysteine and homocysteine as biomarker of various diseases [J]. Food Sci. Nutr., 2020,8(9):4696-4707. doi: 10.1002/fsn3.1818http://dx.doi.org/10.1002/fsn3.1818
TOWNSEND D M,TEW K D,TAPIERO H. The importance of glutathione in human disease [J]. Biomed. Pharmacother., 2003,57(3-4):145-155. doi: 10.1016/s0753-3322(03)00043-xhttp://dx.doi.org/10.1016/s0753-3322(03)00043-x
LIN J,LEE I M,SONG Y Q,et al. Plasma homocysteine and cysteine and risk of breast cancer in women [J]. Cancer Res., 2010,70(6):2397-2405. doi: 10.1158/0008-5472.can-09-3648http://dx.doi.org/10.1158/0008-5472.can-09-3648
HUANG C C,TSENG W L. Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone:remover and sensor [J]. Anal. Chem., 2008,80(16):6345-6350. doi: 10.1021/ac8006973http://dx.doi.org/10.1021/ac8006973
LI P,GE M H,YANG L B,et al. Metal coordination-functionalized Au-Ag bimetal SERS nanoprobe for sensitive detection of glutathione [J]. Analyst, 2019,144(2):421-425. doi: 10.1039/c8an02206bhttp://dx.doi.org/10.1039/c8an02206b
UMEZAWA K,YOSHIDA M,KAMIYA M,et al. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics [J]. Nat. Chem., 2017,9(3):279-286. doi: 10.1038/nchem.2648http://dx.doi.org/10.1038/nchem.2648
NIU L Y,CHEN Y Z,ZHENG H R,et al. Design strategies of fluorescent probes for selective detection among biothiols [J]. Chem. Soc. Rev., 2015,44(17):6143-6160. doi: 10.1039/c5cs00152hhttp://dx.doi.org/10.1039/c5cs00152h
LEE D,KIM G,YIN J,et al. An aryl-thioether substituted nitrobenzothiadiazole probe for the selective detection of cysteine and homocysteine [J]. Chem. Commun., 2015,51(30):6518-6520. doi: 10.1039/c5cc01071chttp://dx.doi.org/10.1039/c5cc01071c
LI R R,HUANG X Y,LU G L,et al. A fluorescence and UV/vis absorption dual-signaling probe with aggregation-induced emission characteristics for specific detection of cysteine [J]. RSC Adv., 2018,8(43):24346-24354. doi: 10.1039/c8ra03756fhttp://dx.doi.org/10.1039/c8ra03756f
WANG B,LI C,YANG L J,et al. Tetraphenylethene decorated with disulfide-functionalized hyperbranched poly(amido amine)s as metal/organic solvent-free turn-on AIE probes for biothiol determination [J]. J. Mater. Chem. B, 2019,7(24):3846-3855. doi: 10.1039/c9tb00214fhttp://dx.doi.org/10.1039/c9tb00214f
ZHENG D,SEFEROS D S,GILJOHANN D A,et al. Aptamer nano-flares for molecular detection in living cells [J]. Nano Lett., 2009,9(9):3258-3261. doi: 10.1021/nl901517bhttp://dx.doi.org/10.1021/nl901517b
KOSCHINSKY T,HEINEMANN L. Sensors for glucose monitoring:technical and clinical aspects [J]. Diabetes Metab. Res. Rev., 2001,17(2):113-123. doi: 10.1002/dmrr.188http://dx.doi.org/10.1002/dmrr.188
OLIVER N S,TOUMAZOU C,CASS A E G,et al. Glucose sensors:a review of current and emerging technology [J]. Diabet. Med., 2009,26(3):197-210. doi: 10.1111/j.1464-5491.2008.02642.xhttp://dx.doi.org/10.1111/j.1464-5491.2008.02642.x
LI H H,ZHU L,ZHU X Y,et al. Glucose detection via glucose-induced disaggregation of ammonium-modified tetraphenylethylene from polyanion [J]. Sens. Actuators B Chem., 2017,246:819-825. doi: 10.1016/j.snb.2017.02.155http://dx.doi.org/10.1016/j.snb.2017.02.155
WANG X W,HUANG Y Z,LV W W,et al. A novel fluorescent probe based on ESIPT and AIE processes for the detection of hydrogen peroxide and glucose and its application in nasopharyngeal carcinoma imaging [J]. Anal. Methods, 2017,9(12):1872-1875. doi: 10.1039/c7ay00167chttp://dx.doi.org/10.1039/c7ay00167c
WU W T,ZHOU T,BERLINER A,et al. Glucose-mediated assembly of phenylboronic acid modified CdTe/ZnTe/ZnS quantum dots for intracellular glucose probing [J]. Angew. Chem. Int. Ed., 2010,49(37):6554-6558. doi: 10.1002/anie.201001508http://dx.doi.org/10.1002/anie.201001508
LIU Y,DENG C M,TANG L,et al. Specific detection of D-Glucose by a tetraphenylethene-based fluorescent sensor [J]. J. Am. Chem. Soc., 2011,133(4):660-663. doi: 10.1021/ja107086yhttp://dx.doi.org/10.1021/ja107086y
SPERGEL D J,KRÜTH U,SHIMSHEK D R,et al. Using reporter genes to label selected neuronal populations in transgenic mice for gene promoter,anatomical,and physiological studies [J]. Prog. Neurobiol., 2001,63(6):673-686. doi: 10.1016/s0301-0082(00)00038-1http://dx.doi.org/10.1016/s0301-0082(00)00038-1
CHATTERJEE S K,BHATTACHARYA M,BARLOW J J. Glycosyltransferase and glycosidase activities in ovarian cancer patients [J]. Cancer Res.,1979,39(6):1943-1951.
NIU Y,WANG H P,WANG Y X,et al. A “turn-on” fluorescent probe for ultra-sensitive detection of β-galactosidase [J]. Microchem. J., 2021,166:106205. doi: 10.1016/j.microc.2021.106205http://dx.doi.org/10.1016/j.microc.2021.106205
JIANG G Y,ZENG G J,ZHU W P,et al. A selective and light-up fluorescent probe for β-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative [J]. Chem. Commun., 2017,53(32):4505-4508. doi: 10.1039/c7cc00249ahttp://dx.doi.org/10.1039/c7cc00249a
HOTCHKISS R S,CHANG K C,SWANSON P E,et al. Caspase inhibitors improve survival in sepsis:a critical role of the lymphocyte [J]. Nat. Immunol., 2000,1(6):496-501. doi: 10.1038/82741http://dx.doi.org/10.1038/82741
ELMORE S. Apoptosis:a review of programmed cell death [J]. Toxicol. Pathol., 2007,35(4):495-516. doi: 10.1080/01926230701320337http://dx.doi.org/10.1080/01926230701320337
SHAULOV-ROTEM Y,MERQUIOL E,WEISS-SADAN T,et al. A novel quenched fluorescent activity-based probe reveals caspase-3 activity in the endoplasmic reticulum during apoptosis [J]. Chem. Sci., 2016,7(2):1322-1337. doi: 10.1039/c5sc03207ehttp://dx.doi.org/10.1039/c5sc03207e
YE D J,SHUHENDLER A J,CUI L N,et al. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo [J]. Nat. Chem., 2014,6(6):519-526. doi: 10.1038/nchem.1920http://dx.doi.org/10.1038/nchem.1920
HAN A T,WANG H M,KWOK R T K,et al. Peptide-induced AIEgen self-assembly:a new strategy to realize highly sensitive fluorescent light-up probes [J]. Anal. Chem., 2016,88(7):3872-3878. doi: 10.1021/acs.analchem.6b00023http://dx.doi.org/10.1021/acs.analchem.6b00023
OOI K,SHIRAKI K,MORISHITA Y,et al. High-molecular intestinal alkaline phosphatase in chronic liver diseases [J]. J. Clin. Lab. Anal., 2007,21(3):133-139. doi: 10.1002/jcla.20178http://dx.doi.org/10.1002/jcla.20178
SONG Z G,HONG Y N,KWOK R T K,et al. A dual-mode fluorescence “turn-on” biosensor based on an aggregation-induced emission luminogen [J]. J. Mater. Chem. B, 2014,2(12):1717-1723. doi: 10.1039/c3tb21576hhttp://dx.doi.org/10.1039/c3tb21576h
XU L B,HE X,HUANG Y B,et al. A novel near-infrared fluorescent probe for detecting intracellular alkaline phosphatase and imaging of liv ing cells [J]. J. Mater. Chem. B, 2019,7(8):1284-1291. doi: 10.1039/c8tb03230khttp://dx.doi.org/10.1039/c8tb03230k
ZHANG W J,YANG H X,LI N,et al. A sensitive fluorescent probe for alkaline phosphatase and an activity assay based on the aggregation-induced emission effect [J]. RSC Adv., 2018,8(27):14995-15000. doi: 10.1039/c8ra01786ghttp://dx.doi.org/10.1039/c8ra01786g
CAO F Y,LONG Y,WANG S B,et al. Fluorescence light-up AIE probe for monitoring cellular alkaline phosphatase activity and detecting osteogenic differentiation [J]. J. Mater. Chem. B, 2016,4(26):4534-4541. doi: 10.1039/c6tb00828chttp://dx.doi.org/10.1039/c6tb00828c
GAO Y X,WEI K L,LI J Z,et al. A facile four-armed AIE fluorescent sensor for heparin and protamine [J]. Sens. Actuators B Chem., 2018,277:408-414. doi: 10.1016/j.snb.2018.09.054http://dx.doi.org/10.1016/j.snb.2018.09.054
MARCHETTI M,ZERMATTEN M G,CALDERARA D B,et al. Heparin-induced thrombocytopenia:a review of new concepts in pathogenesis,diagnosis,and management [J]. J. Clin. Med., 2021,10(4):683-1-16.
LEE H,IN B,MEHTA P K,et al. Dual role of a fluorescent peptidyl probe based on self-assembly for the detection of heparin and for the inhibition of the heparin-digestive enzyme reaction [J]. ACS Appl. Mater. Interfaces, 2018,10(3):2282-2290. doi: 10.1021/acsami.7b15411http://dx.doi.org/10.1021/acsami.7b15411
CHEN L J,REN Y Y,WU N W,et al. Hierarchical self-assembly of discrete organoplatinum(Ⅱ) metallacycles with polysaccharide via electrostatic interactions and their application for heparin detection [J]. J. Am. Chem. Soc., 2015,137(36):11725-11735. doi: 10.1021/jacs.5b06565http://dx.doi.org/10.1021/jacs.5b06565
ZHENG J,YE T,CHEN J Y,et al. Highly sensitive fluorescence detection of heparin based on aggregation-induced emission of a tetraphenylethene derivative [J]. Biosens. Bioelectron., 2017,90:245-250. doi: 10.1016/j.bios.2016.11.056http://dx.doi.org/10.1016/j.bios.2016.11.056
YANG Z Y,FAN X,CHENG W J,et al. AIE nanoassemblies for discrimination of glycosaminoglycans and heparin quality control [J]. Anal. Chem., 2019,91(15):10295-10301. doi: 10.1021/acs.analchem.9b02516http://dx.doi.org/10.1021/acs.analchem.9b02516
CUI J,ZANG S P,SHU W,et al. Highly sensitive and selective detection of heparin in serum based on a long-wavelength tetraphenylethylene-cyanopyridine aggregation-induced emission luminogen [J]. Anal. Chem., 2020,92(10):7106-7113. doi: 10.1021/acs.analchem.0c00496http://dx.doi.org/10.1021/acs.analchem.0c00496
PODE Z,PERI-NAOR R,GEORGESON J M,et al. Protein recognition by a pattern-generating fluorescent molecular probe [J]. Nat. Nanotechnol., 2017,12(12):1161-1168. doi: 10.1038/nnano.2017.175http://dx.doi.org/10.1038/nnano.2017.175
TYAGI A,CHU K L,ABIDI I H,et al. Single-probe multistate detection of DNA via aggregation-induced emission on a graphene oxide platform [J]. Acta Biomater., 2017,50:334-343. doi: 10.1016/j.actbio.2016.12.003http://dx.doi.org/10.1016/j.actbio.2016.12.003
ZHANG R Y,KWOK R T K,TANG B Z,et al. Hybridization induced fluorescence turn-on of AIEgen-oligonucleotide conjugates for specific DNA detection [J]. RSC Adv., 2015,5(36):28332-28337. doi: 10.1039/c5ra00322ahttp://dx.doi.org/10.1039/c5ra00322a
0
浏览量
211
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构