浏览全部资源
扫码关注微信
1.太原理工大学 材料科学与工程学院,山西 太原 030024
2.航天科工防御技术研究试验中心,北京 100854
3.太原理工大学 新材料界面科学与工程教育部重点实验室,山西 太原 030024
4.太原理工大学 轻纺工程学院,山西 太原 030024
5.陕西科技大学 材料原子·分子科学研究所,陕西 西安 710021
[ "杜小娟(1997-),女,山西吕梁人,硕士研究生,2015年于南京工程学院获得学士学位,主要从事光电材料与器件方面的研究。E-mail: 1731616735@qq.com" ]
[ "董海亮(1984-),男,山东菏泽人,博士,高级实验师,硕士生导师,2016年于太原理工大学获得博士学位,主要从事光电材料与器件方面的研究。E-mail: dhltyut@163.com" ]
[ "梁建(1964-),男,山东潍坊人,博士,副教授,硕士生导师,2005年于太原理工大学获得博士学位,主要从事新型半导体材料与器件的研究。E-mail: liangj1220@.126.com" ]
纸质出版日期:2022-05,
收稿日期:2022-01-13,
修回日期:2022-02-11,
扫 描 看 全 文
杜小娟, 刘晶, 董海亮, 等. 电子阻挡层Al组分对GaN基蓝光激光二极管光电性能的影响[J]. 发光学报, 2022,43(5):773-785.
Xiao-juan DU, Jing LIU, Hai-liang DONG, et al. Effect of Al Composition of Electron Blocking Layer on Photoelectric Performance of GaN-based Blue Laser Diode[J]. Chinese Journal of Luminescence, 2022,43(5):773-785.
杜小娟, 刘晶, 董海亮, 等. 电子阻挡层Al组分对GaN基蓝光激光二极管光电性能的影响[J]. 发光学报, 2022,43(5):773-785. DOI: 10.37188/CJL.20220016.
Xiao-juan DU, Jing LIU, Hai-liang DONG, et al. Effect of Al Composition of Electron Blocking Layer on Photoelectric Performance of GaN-based Blue Laser Diode[J]. Chinese Journal of Luminescence, 2022,43(5):773-785. DOI: 10.37188/CJL.20220016.
采用SiLENSe(Simulator of light emitters based on nitride semiconductors)软件仿真研究了Al
x
In
y
Ga
1-
x-y
N电子阻挡层(EBL)Al组分渐变方式对GaN基激光二极管(LD)光电性能的影响,实现了提高输出功率和电光转换效率的目的。文中提出的四种Al组分渐变方式分别是传统均匀组分、右阶梯渐变组分(0~0.07~0.16)、三角形渐变组分(0~0.16~0)、左阶梯渐变组分(0.16~0.07~0)。结果表明,与传统均匀组分EBL结构相比,Al组分阶梯渐变Al
x
In
y
Ga
1-
x-y
N EBL LD导带底的电子势垒显著提高,价带顶的空穴势垒降低。这主要是由于该结构能有效抑制电子泄漏和提高空穴注入效率,从而提高有源区载流子浓度,进而提高有源区辐射复合效率。当注入电流为0.48 A时,采用Al组分阶梯渐变Al
x
In
y
Ga
1-
x-y
N EBL结构能将器件开启电压从5.1 V降至4.9 V,光学损耗从3.4 cm
-1
降至3.29 cm
-1
,从而使光输出功率从335 mW提高至352 mW,电光转换效率从12.5%提高至13.4%。此外,讨论了Al组分阶梯渐变EBL结构对GaN基蓝光LD光电性能的影响机制。该结构设计将为外延生长高功率GaN基LD提供实验数据和理论支撑。
The influence of Al composition-graded of Al
x
In
y
Ga
1-
x-y
N electron blocking layer(EBL) on the photoelectric performance of GaN-based laser diode was numerically investigated using SiLENSe(Simulator of light emitters based on nitride semiconductors) software to achieve high output power and high conversion efficiency. The four Al composition graded modes in this paper are traditional uniform composition
right step-graded composition(0-0.07-0.16)
triangle-graded composition(0-0.16-0)
and left-step graded composition(0.16-0.07-0) respectively. Comparing with the traditional homogeneous composition EBL
it was found that Al composition step-graded EBL not only could significantly enhance band offset of conduction band result in reducing the electron leakage
but also could decrease band offset of valence band in order to improve holes injection efficiency and enhance radiative recombination efficiency. This is mainly due to the fact that Al step-graded composition structure could effectively restrain the electron leakage to the p-side and improve holes injection efficiency
so as to increase the carrier concentration and radiation recombination in the active zone. The Al step-graded composition EBL could effectively reduce opening voltage from 5.1 V to 4.9 V and decrease optical loss from 3.4 cm
-1
to 3.29 cm
-1
thus the output power was increased from 335 mW to 352 mW and the conversion efficiency was increased from 12.5% to 13.4% respectively at the current density of 6 kA/cm
2
. In addition
the influence mechanism of Al step-graded composition EBL on the photoelectric performances of GaN-based laser diode was discussed. This structure will provide experimental data and theoretical support for the epitaxial growth of high-power GaN-based laser diode.
GaN基蓝光激光二极管电子阻挡层Al组分光电性能
GaN-based blue laser diodeselectron blocking layerAl compositionphotoelectric performance
NAKAMURA S, SENOH M, NAGAHAMA S I, et al. InGaN-based multi-quantum-well-structure laser diodes[J]. Jpn. J. Appl. Phys., 1996, 35(1B): L74-L76.
MOUSTAKAS T D, PAIELLA R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz[J]. Rep. Prog. Phys., 2017, 80(10): 106501-1-41.
SANDHU H K, SHARMA A, JAIN A, et al. Efficiency enhancement in InGaN-based laser diodes using an optimized Al0.12-Ga0.88N electron blocking layer[J]. Semicond. Sci. Technol., 2020, 35(10): 105017-1-12.
PIPREK J, NAKAMURA S. Physics of high-power InGaN/GaN lasers[J]. IEE Proc-Optoelectron, 2002, 149(4): 145-151.
WALTEREIT P, BRANDT O, TRAMPERT A, et al. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes[J]. Nature, 2000, 406(6798): 865-868.
LAN T, YAO S, ZHOU G Z, et al. Effect of strain modification on crystallinity and luminescence of InGaN/GaN multiple quantum wells grown by MOCVD[J]. Appl. Phys. A, 2018, 124(9): 619-1-8.
CHERNS D, HENLEY S J, PONCE F A. Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence[J]. Appl. Phys. Lett., 2001, 78(18): 2691-2693.
JRWIERER J J, FISCHER A J, KOLESKE D D. The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices[J]. Appl. Phys. Lett., 2010, 96(5): 051107-1-3.
KIM M H, SCHUBERT M F, DAI Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Appl. Phys. Lett., 2007, 91(18): 183507-1-3.
WANG J X, WANG L, ZHAO W, et al. Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization[J]. Appl. Phys. Lett., 2010, 97(20): 201112-1-3.
PIPREK J. Efficiency droop in nitride-based light-emitting diodes[J]. Phys. Status Solidi (A) Appl. Mater. Sci., 2010, 207(10): 2217-2225.
MEYAARD D S, LIN G B, SHAN Q F, et al. Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes[J]. Appl. Phys. Lett., 2011, 99(25): 251115-1-3.
MIYAJIMA T, YOSHIDA H, YANASHIMA K, et al. GaN-based high-power laser diodes[J]. Mater. Sci. Eng. B, 2001, 82(1-3): 248-252.
HARDY M T, HOLDER C O, FEEZELL D F, et al. Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes[J]. Appl. Phys. Lett., 2013, 103(8): 081103-1-4.
RYU H Y, HA K H, LEE S N, et al. High-performance blue InGaN laser diodes with single-quantum-well active layers[J]. IEEE Photon. Technol. Lett., 2007, 19(21): 1717-1719.
MEHTA K, LIU Y S, WANG J L, et al. Theory and design of electron blocking layers for Ⅲ-N-based laser diodes by numerical simulation[J]. IEEE J. Quantum Electron., 2018, 54(6): 2001310-1-11.
PIPREK J, FARRELL R, DENBAARS S, et al. Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technol. Lett., 2006, 18(1): 7-9.
CHEN J R, LEE C H, KO T S, et al. Effects of built-in polarization and carrier overflow on InGaN quantum-well lasers with electronic blocking layers[J]. J. Lightwave Technol., 2008, 26(3): 329-337.
ZHANG Y, LIU J P, KAO T T, et al. Performance enhancement of InGaN-based laser diodes using a step-graded AlxGa1-xN electron blocking layer[J]. Int. J. High Speed Electron. Syst., 2011, 20(3): 515-520.
MORAWIEC E, SARZAŁA R P, NAKWASKI W. A new structure of nitride light-emitting diodes without polarization effects[J]. Phys. B, 2012, 407(19): 3960-3964.
ALAHYARIZADEH G, AMIRHOSEINY M, HASSAN Z. Effect of different EBL structures on deep violet InGaN laser diodes performance[J]. Opt. Laser Technol., 2016, 76: 106-112.
LIN Z T, WANG H Y, CHEN S Q, et al. Achieving high-performance blue GaN-based light-emitting diodes by energy band modification on AlxInyGa1-x-yN electron blocking layer[J]. IEEE Trans. Electron Dev., 2017, 64(2): 472-480.
XING Y, ZHAO D G, JIANG D S, et al. Suppression of electron and hole overflow in GaN-based near-ultraviolet laser diodes[J]. Chin. Phys. B, 2018, 27(2): 028101-1-6.
HE L F, ZHANG K, WU H L, et al. Efficient carrier transport for 368 nm ultraviolet LEDs with a p-AlInGaN/AlGaN short-period superlattice electron blocking layer[J]. J. Mater. Chem. C, 2021, 9(25): 7893-7899.
刘轩, 王美玉, 李毅, 等. 阶梯状量子阱结构对蓝光GaN基LED性能的改善[J]. 半导体技术, 2019, 44(10): 767-772.
LIU X, WANG M Y, LI Y, et al. Performance improvement of GaN-based blue LED with step-like quantum well structure[J]. Semicond. Technol., 2019, 44(10): 767-772. (in Chinese).
WANG F, LI S S, XIA J B, et al. Effects of the wave function localization in AlInGaN quaternary alloys[J]. Appl. Phys. Lett., 2007, 91(6): 061125-1-3.
AUMER M E, LEBOEUF S F, MCINTOSH F G, et al. High optical quality AlInGaN by metalorganic chemical vapor deposition[J]. Appl. Phys. Lett., 1999, 75(21): 3315-3317.
MONEMAR B. Fundamental energy gap of GaN from photoluminescence excitation spectra[J]. Phys. Rev. B, 1974, 10(2): 676-681.
CHENG L W, CAO C R, MA J, et al. Suppressed polarization effect and enhanced carrier confinement in InGaN light-emitting diodes with GaN/InGaN/GaN triangular barriers[J]. J. Appl. Phys., 2018, 123(22): 223104-1-4.
贾甜甜. GaN基绿光激光二极管外延结构设计及其光电性能研究[D]. 太原: 太原理工大学, 2021.
JIA T T. The Design of the Epitaxial Structure of GaN-based Green Laser Diode and the Research on Photoelectric Performance[D]. Taiyuan: Taiyuan University of Technology, 2021. (in Chinese)
胡磊, 张立群, 刘建平, 等. 高功率氮化镓基蓝光激光器[J]. 中国激光, 2020, 47(7): 0701025-1-6.
HU L, ZHANG L Q, LIU J P, et al. High power GaN-based blue lasers[J]. Chin. J. Laser, 2020, 47(7): 0701025-1-6. (in Chinese)
LASTIP User's Manual, Crosslight Inc. LASer technology integrated program[EB/OL]. [2021-08-20]. http://www.crosslight.cahttp://www.crosslight.ca.
LI X, ZHAO D G, JIANG D S, et al. Fabrication of ridge waveguide of 808 nm GaAs-based laser diodes by wet chemical etching[J]. J. Semicond., 2015, 36(7): 074009-1-5.
VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys[J]. J. Appl. Phys., 2001, 89(11): 5815-5875.
VURGAFTMAN I, MEYER J R. Band parameters for nitrogen-containing semiconductors[J]. J. Appl. Phys., 2003, 94(6): 3675-3696.
CHEN C Y, HSIEH C, LIAO C H, et al. Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode[J]. Opt. Express, 2012, 2(10): 11321-11335.
KANGAWA Y, ITO T, KOUKITU A, et al. Progress in theoretical approach to InGaN and InN epitaxy:in incorporation efficiency and structural stability[J]. Jpn. J. Appl. Phys., 2014, 53(10): 100202-1-11.
KOZAKI T, MATSUMURA H, SUGIMOTO Y, et al. High-power and wide wavelength range GaN-based laser diodes[C]. Proceedings of SPIE 6133, Novel In-plane Semiconductor Lasers Ⅴ, San Jose, 2006: 16-27.
KATO E, NOGUCHI H, NAGAI M, et al. Significant progress in Ⅱ-Ⅵ blue-green laser diode lifetime[J]. Electron. Lett., 1998, 34(3): 282-284.
RYVKIN B S, AVRUTIN E A. Asymmetric, nonbroadened large optical cavity waveguide structures for high-power long-wavelength semiconductor lasers[J]. J. Appl. Phys., 2005, 97(12): 123103-1-6.
管婕, 翟阳, 闫大为, 等. 组份渐变电子阻挡层对InGaN/GaN LED光电特性的影响[J]. 微电子学, 2016, 46(5): 711-715.
GUAN J, ZHAI Y, YAN D W, et al. Influences of composition-graded electron blocking layer on electrical and optical performances of InGaN/GaN LEDs[J]. Microelectronics, 2016, 46(5): 711-715. (in Chinese)
ERBERT G, BUGGE F, KNIGGE A, et al. Highly reliable 75 W InGaAs/AlGaAs laser bars with over 70% conversion efficiency[C]. Proceedings of SPIE 6133, Novel In-plane Semiconductor Lasers Ⅴ, San Jose, 2006: 61330B-1-13.
PETERS M, ROSSIN V, ACKLIN B. High-efficiency high-reliability laser diodes at JDS Uniphase[C]. Proceedings of SPIE 5711, High-power Diode Laser Technology and Applications Ⅲ, San Jose, 2005: 142-151.
CRUMP P, WANG J, CRUM T, et al. 360 W and >70% efficient GaAs-based diode lasers[C]. Proceedings of SPIE 5711, High-power Diode Laser Technology and Applications Ⅲ, San Jose, 2005: 21-29.
0
浏览量
283
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构