浏览全部资源
扫码关注微信
1.福州大学 物理与信息工程学院,平板显示技术国家地方联合工程实验室,福建 福州 350108
2.中国福建光电信息科学与技术创新实验室(闽都创新实验室),福建 福州 350108
[ "蔡俊虎(1998-),男,福建莆田人,硕士研究生,2015年于集美大学获得学士学位,主要从事量子点发光材料与器件的研究。E-mail: 15711526574@163.com" ]
[ "陈恩果(1984-),男,福建福州人,博士,副教授,博士生导师,2013年于浙江大学获得博士学位,主要从事先进显示技术的研究。E-mail: ceg@fzu.edu.cn" ]
纸质出版日期:2022-05,
收稿日期:2021-12-28,
修回日期:2022-01-15,
扫 描 看 全 文
蔡俊虎, 王晨辉, 胡新培, 等. CdSe/CdS量子点聚合物复合材料的水致荧光可逆特性[J]. 发光学报, 2022,43(5):714-724.
Jun-hu CAI, Chen-hui WANG, Xin-pei HU, et al. Water-driven Photoluminescence Reversibility in CdSe/CdS Quantum Dots Polymer Composite[J]. Chinese Journal of Luminescence, 2022,43(5):714-724.
蔡俊虎, 王晨辉, 胡新培, 等. CdSe/CdS量子点聚合物复合材料的水致荧光可逆特性[J]. 发光学报, 2022,43(5):714-724. DOI: 10.37188/CJL.20210401.
Jun-hu CAI, Chen-hui WANG, Xin-pei HU, et al. Water-driven Photoluminescence Reversibility in CdSe/CdS Quantum Dots Polymer Composite[J]. Chinese Journal of Luminescence, 2022,43(5):714-724. DOI: 10.37188/CJL.20210401.
量子点由于其优异的光学和电学特性,在新型光电器件领域是一种极具前景的明星材料。本文通过将核壳CdSe/CdS量子点封装到聚二甲基硅氧烷-聚脲(PDMS-PUa)聚合物基质中制备CdSe/CdS@PDMS-PUa复合材料,发现了其光致发光强度和荧光量子产率的水致增强现象,经荧光衰减曲线和漫反射光谱分析,解释了该现象是来自于水中的H
3
O
+
和OH
-
对量子点表面缺陷的有效钝化,使得量子点的晶胞更趋于理想化。进一步通过实验发现,当复合材料从水中取出干燥后,由于量子点表面缺陷态又重新暴露,光致发光强度和荧光量子产率又恢复到初始值。受所发现的荧光可逆现象的启发,本文基于CdSe/CdS@PDMS-PUa复合材料提出了一种具有荧光响应的液体高度传感器,通过荧光亮度的变化可以判断容器内液体的高度值。这些发现不仅揭示了CdSe/CdS量子点水致荧光可逆特性,同时拓宽了量子点聚合物复合材料在光电领域的应用,具有重要的科学意义和应用前景。
Quantum dots are a promising star material in the field of new optoelectronic devices due to their excellent optical and electrical properties. In this work
we prepare the CdSe/CdS@PDMS-PUa composite by encapsulating core/shell CdSe/CdS quantum dots into an amino-terminated polydimethylsiloxane(PDMS-PUa) polymer matrix
which shows water-driven enhanced photoluminescence(PL) intensity and photoluminescence quantum yield(PLQY). After the analysis of fluorescent decay curve and diffuse reflectance spectrum
the reason for this enhancement is found to be the passivation of the surface defects of the quantum dots by H
3
O
+
and OH
-
in water
making the unit cell of the quantum dots more idealized. However
when the composite is taken out of the water for drying
the defect states are exposed again
and both PL and PLQY return to their original values. Inspired by the water-driven PL reversibility in CdSe/CdS@PDMS-PUa composite
a liquid height sensor with fluorescence response is proposed based on the CdSe/CdS@PDMS-PUa composite
which can judge the liquid height value in the container through the change of fluorescence intensity. These findings not only reveal the reversible characteristics of CdSe/CdS quantum dots
but also broaden the application of quantum dots polymer composites in the field of optoelectronics
which has important scientific significance and application prospects.
CdSe/CdS量子点水荧光可逆缺陷钝化传感
CdSe/CdS quantum dotspolymerwaterphotoluminescence reversibilitysensing
JANG E, JUN S, JANG H, et al. White-light-emitting diodes with quantum dot color converters for display backlights[J]. Adv. Mater., 2010, 22(28): 3076-3080.
冯力蕴, 孔祥贵. 复合荧光CdSe量子点-脂质体的制备与表征[J]. 发光学报, 2007, 28(3): 417-420.
FENG L Y, KONG X G. Preparation and characterization of fluorescence CdSe-liposome compound[J]. Chin. J. Lumin., 2007, 28(3): 417-420. (in Chinese)
QIU F, HAN Z J, PETERSON J J, et al. Photocatalytic hydrogen generation by CdSe/CdS nanoparticles[J]. Nano Lett., 2016, 16(9): 5347-5352.
RAWALEKAR S, RAJ M V N, GHOSH H N. Synthesis and optical properties of type Ⅰ CdSe/ZnSe core-shell quantum dot[J]. Sci. Adv. Mater., 2012, 4(5-6): 637-642.
LIN K H, CHUANG C Y, LEE Y Y, et al. Charge transfer in the heterointerfaces of CdS/CdSe cosensitized TiO2 photoelectrode[J]. J. Phys. Chem. C, 2012, 116(1): 1550-1555.
HUANG B L, CHEN E G, SUN L, et al. Quantum-dot color conversion film patterned by screen printing and overprinting process for display backlights[J]. Opt. Laser Technol., 2022, 145: 107486.
CHEN Y, CAI J H, LIN J Y, et al. Quantum-dot array with a random rough interface encapsulated by atomic layer deposition[J]. Opt. Lett., 2022, 47(1): 166-169.
SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nat. Photonics, 2013, 7(1): 13-23.
AMIRAV L, ALIVISATOS A P. Luminescence studies of individual quantum dot photocatalysts[J]. J. Am. Chem. Soc., 2013, 135(35): 13049-13053.
庄庆一, 由芳田, 彭洪尚. 基于CdSe@ZnS量子点水溶性纳米粒子的制备及荧光性能[J]. 发光学报, 2018, 39(10): 1339-1346.
ZHUANG Q Y, YOU F T, PENG H S. Synthesis and fluorescence properties research of water-soluble nanoparticles based on CdSe@ZnS quantum dots[J]. Chin. J. Lumin., 2018, 39(10): 1339-1346. (in Chinese)
XIE H X, CHEN E G, YE Y, et al. Highly stabilized gradient alloy quantum dots and silica hybrid nanospheres by core double shells for photoluminescence devices[J]. J. Phys. Chem. Lett., 2020, 11(4): 1428-1434.
CHEN Y F, ROSENZWEIG Z. Luminescent CdS quantum dots as selective ion probes[J]. Anal. Chem., 2002, 74(19): 5132-5138.
XIE H X, CHEN E G, YE Y, et al. Interfacial optimization of quantum dot and silica hybrid nanocomposite for simultaneous enhancement of fluorescence retention and stability[J]. Appl. Phys. Lett., 2020, 117(17): 171101-1-7.
LIN S Y, TAN G J, YU J H, et al. Multi-primary-color quantum-dot down-converting films for display applications[J]. Opt. Express, 2019, 27(20): 28480-28493.
CHEN S M, LI W, WU J, et al. Electrically pumped continuous-wave Ⅲ-Ⅴ quantum dot lasers on silicon[J]. Nat. Photonics, 2016, 10(5): 307-311.
刘萌, 闫玉蓉, 汪徐德, 等. 基于黑磷量子点可饱和吸收体的多波长脉冲簇光纤激光器[J]. 中国激光, 2017, 44(7): 070313-1-7.
LIU M, YAN Y R, WANG X D, et al.. Black phosphorus quantum dots saturable absorber for dual-wavelength pulse cluster fiber laser[J]. Chin. J. Lasers, 2017, 44(7): 070313-1-7. (in Chinese)
DUONG H D, YANG S M, SEO Y W, et al. Effects of CdSe and CdSe/ZnS core/shell quantum dots on singlet oxygen production and cell toxicity[J]. J. Nanosci. Nanotechnol., 2018, 18(3): 1568-1576.
KLOEPFER J A, BRADFORTH S E, NADEAU J L. Photophysical properties of biologically compatible CdSe quantum dot structures[J]. J. Phys. Chem. B, 2005, 109(20): 9996-10003.
GLADYSHEV P P, TUMANOV Y V, IBRAGIMOVA S A, et al. Quantum dots in proteomic studies and medical diagnostics[J]. Russ. Chem. Bull., 2018, 67(4): 600-613.
陈中师, 王河林, 隋成华, 等. 基于CdSe/ZnS核壳量子点薄膜的荧光温度传感器[J]. 发光学报, 2014, 35(10): 1215-1220.
CHEN Z S, WANG H L, SUI C H, et al.. Fluorescence temperature sensor based on CdSe/ZnS core-shell quantum dots thin film[J]. Chin. J. Lumin., 2014, 35(10): 1215-1220. (in Chinese)
HILDEBRANDT N. Biofunctional quantum dots:controlled conjugation for multiplexed biosensors[J]. ACS Nano, 2011, 5(7): 5286-5290.
KERSHAW S V, SUSHA A S, ROGACH A L. Narrow bandgap colloidal metal chalcogenide quantum dots:synthetic methods, heterostructures, assemblies, electronic and infrared optical properties[J]. Chem. Soc. Rev., 2013, 42(7): 3033-3087.
KE R, ZHANG X M, WANG L, et al. Electrochemiluminescence sensor based on graphene oxide/polypyrrole/CdSe nanocomposites[J]. J. Alloys Compd., 2015, 622: 1027-1032.
GRINEVICH V S, SMYNTYNA V A. Electronic mechanism for absorptive sensitivity in semiconductor gas sensors[J]. Sens. Actuators B:Chem., 1994, 19(1-3): 426-428.
CHEN E G, LIN J Y, YANG T, et al. Asymmetric quantum-dot pixelation for color-converted white balance[J]. ACS Photonics, 2021, 8(7): 2158-2165.
POTYRAILO R A, LEACH A M. Gas sensor materials based on semiconductor nanocrystal/polymer composite films[C]. 13th International Conference on Solid-state Sensors, Seoul, 2005: 1292-1295.
MUHAMMAD F, TAHIR M, ZEB M, et al. Cadmium selenide quantum dots:synthesis, characterization and their humidity and temperature sensing properties with poly-(dioctylfluorene)[J]. Sens. Actuators B:Chem., 2019, 285: 504-512.
HAMOOD R, ABD EL-SADEK M S, GADALLA A. Facile synthesis, structural, electrical and dielectric properties of CdSe/CdS core-shell quantum dots[J]. Vacuum, 2018, 157: 291-298.
MATA A, FLEISCHMAN A J, ROY S. Characterization of polydimethylsiloxane(PDMS) properties for biomedical micro/nanosystems[J]. Biomed. Microdevices, 2005, 7(4): 281-293.
STANISH P C, RADOVANOVIC P V. Surface-enabled energy transfer in Ga2O3-CdSe/CdS nanocrystal composite films:tunable all-inorganic rare earth element-free white-emitting phosphor[J]. J. Phys. Chem. C, 2016, 120(35): 19566-19573.
XIE G, XU L, SUN L, et al. Insight into the reaction mechanism of water, oxygen and nitrogen molecules on a tin iodine perovskite surface[J]. J. Mater. Chem. A, 2019, 7(10): 5779-5793.
吕玫, 张丽, 张彦, 等. 量子点发光二极管稳定性提高策略[J]. 中国光学, 2021, 14(1): 117-134.
LV M, ZHANG L, ZHANG Y, et al.. Strategies for improving the stability of quantum dots light-emitting diodes[J]. Chin. Opt., 2021, 14(1): 117-134. (in Chinese)
YU X Y, WU L Z, YANG D, et al. Hydrochromic CsPbBr3 nanocrystals for anti-counterfeiting[J]. Angew. Chem. Int. Ed., 2020, 59(34): 14527-14532.
JO J H, HEO H S, LEE K. Assessing stability of nanocomposites containing quantum dot/silica hybrid particles with different morphologies at high temperature and humidity[J]. Chem. Mater., 2020, 32(24): 10538-10544.
SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522.
LUO C H, HUANG S H, ZHANG T, et al. Water driven photoluminescence enhancement and recovery of CH3NH3PbBr3/silicon oil/PDMS-urea composite[J]. J. Alloys Compd., 2020, 834: 155088-1-8.
FELDMANN J, PETER G, GOBEL E O, et al. Linewidth dependence of radiative exciton lifetimes in quantum wells[J]. Phys. Rev. Lett., 1987, 59(20): 2337-2340.
WANG C H, CAI J H, YE Y Y, et al. Full-visible-spectrum perovskite quantum dots by anion exchange resin assisted synthesis[J]. Nanophotonics, 2022, doi: 10.1515/nanoph-2021-0768http://doi.org/10.1515/nanoph-2021-0768.
RESHAK A H, AULUCK S. Ab initio calculations of the electronic, linear and nonlinear optical properties of zinc chalcogenides[J]. Phys. B: Condens. Matter, 2007, 388(1-2): 34-42.
REN Z J, YU H B, LIU Z L, et al. Band engineering of Ⅲ-nitride-based deep-ultraviolet light-emitting diodes:a review[J]. J. Phys. D: Appl. Phys., 2020, 53(7): 073002-1-23.
CAI J H, WANG C H, HU X P, et al. Water-driven photoluminescence reversibility in CsPbBr3/PDMS-PUa composite[J]. Nano Res., 2022, doi: 10.1007/s12274-022-4202-0http://doi.org/10.1007/s12274-022-4202-0.
余凤斌, 陈福义, 介万奇. CdS半导体纳米晶的生长及其光谱研究[J]. 功能材料, 2006, 37(11): 1835-1837.
YU F B, CHEN F Y, JIE W Q. Preparation of CdS semiconductor nanocrystalline and spectral properties[J]. J. Funct. Mater., 2006, 37(11): 1835-1837. (in Chinese)
CORDERO S R, CARSON P J, ESTABROOK R A, et al. Photo-activated luminescence of CdSe quantum dot monolayers[J]. J. Phys. Chem. B, 2000, 104(51): 12137-12142.
XIE Q Y, LIU C, LIN X B, et al. Nanodiamond reinforced poly(dimethylsiloxane)-based polyurea with self-healing ability for fouling release coating[J]. ACS Appl. Polym. Mater., 2020, 2(8): 3181-3188.
FU Y H, XU F C, WENG D H, et al. Superhydrophobic foams with chemical- and mechanical-damage-healing abilities enabled by self-healing polymers[J]. ACS Appl. Mater. Interfaces, 2019, 11(40): 37285-37294.
0
浏览量
118
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构