浏览全部资源
扫码关注微信
1.中国科学院半导体研究所 半导体材料科学重点实验室, 北京 100083
2.中国科学院大学 材料与光电研究中心, 北京 100049
[ "牛慧丹(1994-),女,河北邢台人,博士研究生,2019年于中国科学院大学国家纳米科学中心获得硕士学位,主要从事基于宽禁带半导体材料的设备与制备的研究。E-mail: niuhuidan@semi.ac.cn" ]
[ "杨少延(1973-),男,黑龙江桦南县人,博士,研究员,博士研究生导师,2006年于中国科学院半导体研究所获得博士学位,主要从事宽禁带和超宽禁带半导体材料、器件及物理的研究。E-mail: sh-yyang@semi.ac.cn" ]
[ "刘祥林(1965-),男,湖南岳阳人,博士,副研究员,1999年于中国科学院半导体研究所获得博士学位。主要从事氮化镓材料、器件及物理的研究。E-mail: xlliu@semi.ac.cn" ]
纸质出版日期:2021-11-01,
收稿日期:2021-08-30,
修回日期:2021-09-10,
扫 描 看 全 文
牛慧丹, 孔苏苏, 杨少延, 等. 温度对氮化铝表面形貌的调控及演化机理[J]. Chinese Journal of Luminescence, 2021,42(11):1739-1747.
Hui-dan NIU, Su-su KONG, Shao-yan YANG, et al. Temperature Dependence and Evolution Mechanism of Aluminum Nitride Morphologies[J]. 发光学报, 2021,42(11):1739-1747.
牛慧丹, 孔苏苏, 杨少延, 等. 温度对氮化铝表面形貌的调控及演化机理[J]. Chinese Journal of Luminescence, 2021,42(11):1739-1747. DOI: 10.37188/CJL.20210287.
Hui-dan NIU, Su-su KONG, Shao-yan YANG, et al. Temperature Dependence and Evolution Mechanism of Aluminum Nitride Morphologies[J]. 发光学报, 2021,42(11):1739-1747. DOI: 10.37188/CJL.20210287.
氮化铝(AlN)是一种重要的超宽禁带半导体材料. 本文研究了采用氢化物气相外延(HVPE)方法生长氮化铝的表面形貌演化和生长机理. AlN的制备过程是氮化处理后以700~1 100 ℃的不同温度生长,得到四组不同温度下的表面形貌. 结果表明,生长温度对AlN的生长形貌和生长模式具有重要的影响. AlN的生长形貌体现在纳米尺度和微米尺度的形貌差异,该结果归因于受生长温度主导的Al原子的表面迁移能力和位错演化. 另外,在900 ℃生长温度下得到具有倒金字塔结构的V坑形貌. V坑面为{10-11}半极性面,并遵循三维(3D)生长模式. 这种具有半极性面微观形貌的AlN可作为模板进行半极性紫外LED器件结构或其他Ⅲ族氮化物外延生长,在光电子器件和电子器件研制方面具有广阔的应用前景.
Aluminum nitride(AlN) is a significant ultra-wide bandgap semiconductor material. This paper studies the surface morphology evolution and growth mechanism of AlN grown on sapphire substrates by hydride vapor phase epitaxy(HVPE). The morphologies of AlN are controlled by the nitridation pre-treatment and the growth temperature from 750 ℃ to 1 100 ℃. The results show that growth temperature played a critical role in the AlN growth of morphology and growth mode. The difference in nanoscale or microscale morphologies of AlN is attributed to the surface migration of Al adatoms dominated by the growth temperature and the evolution of the dislocation. Moreover
the surface morphology evolution leads to an inverted pyramid morphology or large V-shaped pits at the growth temperature of 900 ℃. The grown V-shaped pits have {10-11} semi-polar facets and follow the three-dimensional(3D) growth mode. The semi-polar facets AlN structure could be used for realizing facet-controlled epitaxial of semi-polar UV-LED or other Ⅲ-nitride growth
which has prospects in optoelectronic and electronic devices.
超宽禁带半导体材料氮化铝氢化物气相外延生长温度表面形貌
ultra-wide bandgap semiconductoraluminum nitridehydride vapor phase epitaxygrowth temperaturesurface morphology
ALFARAJ N, MIN J W, KANG C H, et al. Deep-ultraviolet integrated photonic and optoelectronic devices: a prospect of the hybridization of group Ⅲ-nitrides, Ⅲ-oxides, and two-dimensional materials[J]. J. Semicond., 2019, 40(12): 121801-1-48.
BANAL R G, FUNATO M, KAWAKAMI Y. Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy[J]. Appl. Phys. Lett., 2008, 92(24): 241905-1-3.
RODRÍGUEZ-CLEMENTE R, ASPAR B, AZEMA N, et al. Morphological properties of chemical vapour deposited AlN films[J]. J. Cryst. Growth, 1993, 133(1-2): 59-70.
沈波, 杨学林, 许福军. 氮化物宽禁带半导体的MOCVD大失配异质外延[J]. 人工晶体学报, 2020, 49(11): 1953-1969.
SHEN B, YANG X L, XU F J. Large lattice-mismatched heteroepitaxial growth of nitride wide bandgap semiconductors by MOCVD[J]. J. Synth. Cryst., 2020, 49(11): 1953-1969. (in Chinese)
MOGILATENKO A, ENSLIN J, KNAUER A, et al. V-pit to truncated pyramid transition in AlGaN-based heterostructures[J]. Semicond. Sci. Technol., 2015, 30(11): 114010-1-8.
KUMAGAI Y, ENATSU Y, ISHIZUKI M, et al. Investigation of void formation beneath thin AlN layers by decomposition of sapphire substrates for self-separation of thick AlN layers grown by HVPE[J]. J. Cryst. Growth, 2010, 312(18): 2530-2536.
贾辉, 陈一仁, 孙晓娟, 等. AlN插入层对a-AlGaN的外延生长的影响[J]. 发光学报, 2012, 33(5): 519-524.
JIA H, CHEN Y R, SUN X J, et al. Effect of AlN interlayer on a-plane AlGaN grown by MOCVD[J]. Chin. J. Lumin., 2012, 33(5): 519-524. (in English)
龙长林, 陈峰武, 陈洪. 基于MOCVD高/低温调制生长AlN模板材料方法[J]. 电子工艺技术, 2021, 42(4): 232-235.
LONG C L, CHEN F W, CHEN H. High/low temperature modulated growth of AlN template materials based on MOCVD[J]. Electron. Process Technol., 2021, 42(4): 232-235. (in Chinese)
SUN M S, LI J F, ZHANG J C, et al. The fabrication of AlN by hydride vapor phase epitaxy[J]. J. Semicond., 2019, 40(12): 121803-1-12.
李毓轩, 秦知福. HVPE法制备AlN单晶薄膜[J]. 压电与声光, 2016, 38(3): 409-412.
LI Y X, QIN Z F. Preparation of AlN single crystal film by hydride vapor phase epitaxy(HVPE)[J]. Piezoelectr. Acoustoopt., 2016, 38(3): 409-412. (in Chinese)
ZHANG D, LIU F M, YAO Y, et al. AlN epilayers and nanostructures growth in a homebuilt alumina hot-wall high temperature chemical vapor deposition system[J]. J. Mater. Sci.:Mater. Electron., 2014, 25(5): 2210-2219.
徐永宽, 李强, 程红娟, 等. HVPE法生长AlN薄膜材料[J]. 微纳电子技术, 2010, 47(2): 89-92.
XU Y K, LI Q, CHENG H J, et al. Growth of AlN film by HVPE method[J]. Micronanoelectron. Technol., 2010, 47(2): 89-92. (in Chinese)
CHEN J J, SU X J, HUANG J, et al. Effects of 6H-SiC substrate polarity on the morphology and microstructure of AlN films by HVPE with varied Ⅴ/Ⅲ ratio[J]. J. Cryst. Growth, 2019, 507: 196-199.
KAKANAKOVA-GEORGIEVA A, NILSSON D, JANZÉN E. High-quality AlN layers grown by hot-wall MOCVD at reduced temperatures[J]. J. Cryst. Growth, 2012, 338(1): 52-56.
NAGASHIMA T, HIRONAKA K, ISHIZUKI M, et al. Polarity control and preparation of AlN nano-islands by hydride vapor phase epitaxy[J]. Phys. Status Solidi C, 2009, 6(S2): S444-S446.
邓旭光, 韩军, 邢艳辉, 等. H2载气流量对AlN缓冲层生长的影响[J]. 发光学报, 2013, 34(6): 776-781.
DENG X G, HAN J, XING Y H, et al. Influence of H2 carrier gas on epitaxy of AlN buffer layer[J]. Chin. J. Lumin., 2013, 34(6): 776-781. (in Chinese)
刘梦婷, 韩杰才, 王先杰, 等. 氮化铝纳米结构的生长与物性研究[J]. 人工晶体学报, 2020, 49(11): 2098-2121.
LIU M T, HAN J C, WANG X J, et al. Investigation on the growth and physical properties of AlN nanostructures[J]. J. Synth. Cryst., 2020, 49(11): 2098-2121. (in Chinese)
李紫璇, 郝留成, 张建飞, 等. 前驱体法合成氮化铝纳米材料及其生长机制[J]. 硅酸盐学报, 2020, 38(6): 787-793.
LI Z X, HAO L C, ZHANG J F, et al. Preparation of aluminum nitride nanomaterials by precursor method[J]. J. Chin. Ceram. Soc., 2020, 38(6): 787-793. (in Chinese)
UESUGI K, SHOJIKI K, TEZEN Y, et al. Suppression of dislocation-induced spiral hillocks in MOVPE-grown AlGaN on face-to-face annealed sputter-deposited AlN template[J]. Appl. Phys. Lett., 2020, 116(6): 062101-1-5.
PADUANO Q S, WEYBURNE D W, JASINSKI J, et al. Effect of initial process conditions on the structural properties of AlN films[J]. J. Cryst. Growth, 2004, 261(2-3): 259-265.
贲建伟, 孙晓娟, 蒋科, 等. AlGaN基宽禁带半导体光电材料与器件[J]. 人工晶体学报, 2020, 49(11): 2046-2067.
BEN J W, SUN X J, JIANG K, et al. AlGaN based wide bandgap photoelectric materials and devices[J]. J. Synth. Cryst., 2020, 49(11): 2046-2067. (in Chinese)
LIU X H, LIU J L, MAO Q H, et al. Effects of p-AlGaN EBL thickness on the performance of InGaN green LEDs with large V-pits[J]. Semicond. Sci. Technol., 2016, 31(2): 025012-1-6.
RATHKANTHIWAR S, KALRA A, MURALIDHARAN R, et al. V-pits-induced photoresponse enhancement in AlGaN UV-B photodetectors on Si(111)[J]. IEEE Trans. Electron Devices, 2020, 67(10): 4281-4287.
LI X, LE GAC G, BOUCHOULE S, et al. Structural and optical investigations of AlGaN MQWs grown on a relaxed AlGaN buffer on AlN templates for emission at 280 nm[J]. J. Cryst. Growth, 2015, 432: 37-44.
KHAFAGY K H, HATEM T M, BEDAIR S M. Thermodynamics models for v-pit nucleation and growth in Ⅲ-nitride on silicon[J]. JOM, 2021, 73(1): 293-298.
FUJIKURA H, KONNO T, KIMURA T, et al. AlN nanostructures and flat, void-less AlN templates formed by hydride vapor phase epitaxy on patterned sapphire substrates[J]. Appl. Phys. Express, 2020, 13(2): 025506-1-5.
ZHENG J, YANG Y, YU B, et al. [0001] oriented aluminum nitride one-dimensional nanostructures:synthesis, structure evolution, and electrical properties[J]. ACS Nano, 2008, 2(1): 134-142.
ZHENG J, SONG X B, YU B, et al. Asymmetrical AlN nanopyramids induced by polar surfaces[J]. Appl. Phys. Lett., 2007, 90(19): 193121-1-3.
LIU C, HU Z, WU Q, et al. Vapor-solid growth and characterization of aluminum nitride nanocones[J]. J. Am. Chem. Soc., 2005, 127(4): 1318-1322.
TIMOSHKIN A Y, BETTINGER H F, SCHAEFER H F. The chemical vapor deposition of aluminum nitride:unusual cluster formation in the gas phase[J]. J. Am. Chem. Soc., 1997, 119(24): 5668-5678.
TANG L, ZUO R, ZHANG H, et al. Quantum chemical study on gas-phase oligomerization in AlGaN MOCVD growth[J]. Comput. Theor. Chem., 2019, 1166: 112573-1-9.
TANG L, ZUO R, ZHANG H. Quantum chemical study on nanoparticles formation mechanism in AlGaN MOCVD growth[J]. J. Cryst. Growth, 2019, 525: 125201-1-9.
WU Z H, YAN J C, GUO Y N, et al. Study of the morphology evolution of AlN grown on nano-patterned sapphire substrate[J]. J. Semicond., 2019, 40(12): 122803-1-6.
TRODAHL H J, MARTIN F, MURALT P, et al. Raman spectroscopy of sputtered AlN films:E2(high) biaxial strain dependence[J]. Appl. Phys. Lett., 2006, 89(6): 061905-1-3.
SARUA A, KUBALL M, VAN NOSTRAND J E. Deformation potentials of the E2(high) phonon mode of AlN[J]. Appl. Phys. Lett., 2002, 81(8): 1426-1428.
CHEN F, JI X H, ZHANG Q Y. Morphology-controlled synthesis and structural characterization of ternary AlxGa1-xN nanostructures by chemical vapor deposition[J]. CrystEngComm, 2015, 17(6): 1249-1257.
JI X, LI H J, WU Z G, et al. Growth of AlN hexagonal oriented complex nanostructures induced by nucleus arrangement[J]. CrystEngComm, 2011, 13(16): 5198-5203.
TOKUMOTO Y, KUTSUKAKE K, OHNO Y, et al. Dislocation structure in AlN films induced by in situ transmission electron microscope nanoindentation[J]. J. Appl. Phys., 2012, 112(9): 093526-1-6.
BAI J, WANG T, PARBROOK P J, et al. Two coexisting mechanisms of dislocation reduction in an AlGaN layer grown using a thin GaN interlayer[J]. Appl. Phys. Lett., 2007, 91(13): 131903-1-3.
LU L, GAO Z Y, SHEN B, et al. Microstructure and origin of dislocation etch pits in GaN epilayers grown by metal organic chemical vapor deposition[J]. J. Appl. Phys., 2008, 104(12): 123525-1-4.
TANIYASU Y, KASU M, MAKIMOTO T. Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC(0001) substrate[J]. J. Cryst. Growth, 2007, 298: 310-315.
JIAN S R, TSENG Y C, TENG I J, et al. Dislocation energetics and pop-ins in AlN thin films by berkovich nanoindentation[J]. Materials(Basel), 2013, 6(9): 4259-4267.
0
浏览量
87
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构