浏览全部资源
扫码关注微信
武汉大学 动力与机械学院,湖北 武汉 430072
[ "宫丽艳(1996-),女,山东烟台人,硕士研究生,2019年于华中农业大学获得学士学位,主要从事GaN基LED芯片和先进电子制造等方面的研究。E-mail: 2019202080016@whu.edu.cn" ]
[ "周圣军(1983-),男,湖北天门人,博士,教授,博士研究生导师,2011年于上海交通大学获得博士学位,主要从事GaN基LED芯片和先进电子制造等方面的研究。E-mail: zhousj@whu.edu.cn" ]
纸质出版日期:2021-12,
收稿日期:2021-08-27,
修回日期:2021-09-09,
移动端阅览
宫丽艳, 唐斌, 胡红坡, 等. 复合成核层对InGaN基黄光LED内量子效率的影响[J]. 发光学报, 2021,42(12):1914-1920.
LI-YAN GONG, BIN TANG, HONG-PO HU, et al. Effect of Hybrid Nucleation Layer on Internal Quantum Efficiency of InGaN-based Yellow LEDs. [J]. Chinese journal of luminescence, 2021, 42(12): 1914-1920.
宫丽艳, 唐斌, 胡红坡, 等. 复合成核层对InGaN基黄光LED内量子效率的影响[J]. 发光学报, 2021,42(12):1914-1920. DOI: 10.37188/CJL.20210286.
LI-YAN GONG, BIN TANG, HONG-PO HU, et al. Effect of Hybrid Nucleation Layer on Internal Quantum Efficiency of InGaN-based Yellow LEDs. [J]. Chinese journal of luminescence, 2021, 42(12): 1914-1920. DOI: 10.37188/CJL.20210286.
开发了一种由溅射AlN层和中温GaN层组成的复合成核层来提高黄光LED的内量子效率。系统地研究了在溅射AlN成核层和复合成核层上生长的InGaN基黄光LED的晶体质量和光学性能,揭示了复合成核层对黄光LED内量子效率的影响机制。分别采用透射电子显微镜、X射线衍射、拉曼光谱、变温光致发光谱和电致发光谱对黄光LED进行表征分析。结果发现,复合成核层能够诱导产生堆垛层错,可以有效降低外延层中的位错密度和残余应力。在溅射AlN成核层和复合成核层上生长的黄光LED外延层中的位错密度分别为5.04×10
8
cm
-2
和3.98×10
8
cm
-2
,压应力分别为482.71 MPa和266.38 MPa。通过变温光致发光谱计算得到在溅射AlN成核层和复合成核层上生长的黄光LED的内量子效率(室温295 K)分别为12.5%和29.8%。
A hybrid nucleation layer consisting of sputtered AlN component and mid-temperature GaN component was developed to improve the internal quantum efficiency of yellow LED. Transmission electron microscopy
X-ray diffraction
and Raman spectra were used to characterize the crystal quality of InGaN-based yellow LEDs. The optical properties of InGaN-based yellow LEDs were investigated by temperature-dependent photoluminescence spectra and electroluminescence spectra. It is found that stacking faults are formed using the hybrid nucleation layer
which can effectively reduce the dislocation density and residual stress in the epitaxial layer. The dislocation density of yellow LED epitaxial layer grown on the sputtered AlN nucleation layer and hybrid nucleation layer is 5.04×10
8
cm
-2
and 3.98×10
8
cm
-2
. The in-plane compressive stress of yellow LED grown on the sputtered AlN nucleation layer and hybrid nucleation layer is 482.71 MPa and 266.38 MPa. By replacing the conventional sputtered AlN nucleation layer with hybrid nucleation layer
the internal quantum efficiency of yellow LEDs is increased from 12.5% to 29.8% at room temperature of 295 K.
黄光发光二极管成核层内量子效率堆垛层错压电极化
yellow light-emitting diodesnucleation layersinternal quantum efficiencystacking faultspiezoelectric polarization
LIN H W, LU Y J, CHEN H Y, et al. InGaN/GaN nanorod array white light-emitting diode[J]. Appl. Phys. Lett., 2010, 97(7):073101-1-3.
SCHUBERT E F, KIM J K. Solid-state light sources getting smart[J]. Science, 2005, 308(5726):1274-1278.
PONCE F A, BOUR D P. Nitride-based semiconductors for blue and green light-emitting devices[J]. Nature, 1997, 386(6623):351-359.
HU H P, TANG B, WAN H, et al. Boosted ultraviolet electroluminescence of InGaN/AlGaN quantum structures grown on high-index contrast patterned sapphire with silica array[J]. Nano Energy, 2020, 69:104427.
ZHOU S J, LIU X T, YAN H, et al. Highly efficient GaN-based high-power flip-chip light-emitting diodes[J]. Opt. Express, 2019, 27(12):A669-A692.
NARUKAWA Y, ICHIKAWA M, SANGA D, et al. White light emitting diodes with super-high luminous efficacy[J]. J. Phys. D:Appl. Phys., 2010, 43(35):354002.
HU Y S, ZHUANG W D, YE H Q, et al. A novel red phosphor for white light emitting diodes[J]. J. Alloys Compd., 2005, 390(1-2):226-229.
ZHAO X Y, TANG B, GONG L Y, et al. Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes[J]. Appl. Phys. Lett., 2021, 118(18):182102.
PRINS A D, SLY J L, MENEY A T, et al. High pressure determination of AlGaInP band structure[J]. J. Phys. Chem. Solids, 1995, 56(3-4):349-352.
JIANG F Y, ZHANG J L, XU L Q, et al. Efficient InGaN-based yellow-light-emitting diodes[J]. Photonics Res., 2019, 7(2):144-148.
ALHASSAN A I, YOUNG N G, FARRELL R M, et al. Development of high performance green c-plane Ⅲ-nitride light-emitting diodes[J]. Opt. Express, 2018, 26(5):5591-5601.
DER MAUR M A, LORENZ K, DI CARLO A. Band gap engineering approaches to increase InGaN/GaN LED efficiency[J]. Opt. Quant. Electron., 2012, 44(3-5):83-88.
LEKHAL K, DAMILANO B, NGO H T, et al. Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission[J]. Appl. Phys. Lett., 2015, 106(14):142101-1-5.
LEKHAL K, HUSSAIN S, DE MIERRY P, et al. Optimized In composition and quantum well thickness for yellow-emitting (Ga,In)N/GaN multiple quantum wells[J]. J. Cryst. Growth, 2016, 434:25-29.
ALAEI H R, ESHGHI H. Theoretical modeling for quantum-confined Stark effect due to internal piezoelectric fields in GaInN strained quantum wells[J]. Phys. Lett. A, 2009, 374(1):66-69.
YAMAMOTO S, ZHAO Y J, PAN C C, et al. High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (2021) GaN substrates[J]. Appl. Phys. Express, 2010, 3(12):122102.
ROMANOV A E, BAKER T J, NAKAMURA S, et al. Strain-induced polarization in wurtzite III-nitride semipolar layers[J]. J. Appl. Phys., 2006, 100(2):023522-1-10.
ANCHAL N, PANSARI A, SAHOO B K, et al. Effect of polarization field and Auger recombination on internal quantum efficiency of InGaN/GaN blue LED[J]. AIP Conf. Proc., 2020, 2220(1):050008.
HU H P, ZHOU S J, WAN H, et al. Effect of strain relaxation on performance of InGaN/GaN green LEDs grown on 4-inch sapphire substrate with sputtered AlN nucleation layer[J]. Sci. Rep., 2019, 9(1):3447-1-9.
周圣军, 刘胜. 氮化镓基发光二极管芯片设计与制造技术[M]. 北京: 科学出版社, 2019.
ZHOU S J, LIU S. Design and Manufacturing Technology of GaN-based Light-emitting Diodes[M]. Beijing: Science Press, 2019. (in Chinese)
YEN C H, LAI W C, YANG Y Y, et al. GaN-based light-emitting diode with sputtered AlN nucleation layer[J]. IEEE Photonic. Tech. Lett., 2012, 24(4):294-296.
ITO S, NAKAGITA T, SAWAKI N, et al. Nature of yellow luminescence band in GaN grown on Si substrate[J]. Jpn. J. Appl. Phys., 2014, 53(11S):11RC02-1-5.
KOSLOW I L, HARDY M T, HSU P S, et al. Performance and polarization effects in (11<math id="M1"><mover accent="true"><mn>2</mn><mo>¯</mo></mover></math>2) long wavelength light emitting diodes grown on stress relaxed InGaN buffer layers[J]. Appl. Phys. Lett., 2012, 101(12):121106-1-4.
AMANO H, SAWAKI N, AKASAKI I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer[J]. Appl. Phys. Lett., 1986, 48(5):353-355.
HU H P, ZHOU S J, LIU X T, et al. Effects of GaN/AlGaN/sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes[J]. Sci. Rep., 2017, 7:44627-1-10.
WU X H, ELSASS C R, ABARE A, et al. Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells[J]. Appl. Phys. Lett., 1998, 72(6):692-694.
LESTER S D, PONCE F A, CRAFORD M G, et al. High dislocation densities in high efficiency GaN-based light-emitting diodes[J]. Appl. Phys. Lett., 1995, 66(10):1249-1251.
KIM J, WOO H, JOO K, et al. Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres[J]. Sci. Rep., 2013, 3:3201-1-7.
CHIERCHIA R, BÖTTCHER T, HEINKE H, et al. Microstructure of heteroepitaxial GaN revealed by X-ray diffraction[J]. J. Appl. Phys., 2003, 93(11):8918-8925.
HUSHUR A, MANGHNANI M H, NARAYAN J. Raman studies of GaN/sapphire thin film heterostructures[J]. J. Appl. Phys., 2009, 106(5):054317-1-5.
ZHAO Y, XU S R, PENG R S, et al. Performance enhancement of InGaN/GaN MQWs grown on SiC substrate with sputtered AlN nucleation layer[J]. Mater. Lett., 2021, 294:129783.
ZHOU S, HU H P, LIU X T, et al. Comparative study of GaN-based ultraviolet LEDs grown on different-sized patterned sapphire substrates with sputtered AlN nucleation layer[J]. Jpn. J. Appl. Phys., 2017, 56(11):111001-1-8.
WATANABE S, YAMADA N, NAGASHIMA M, et al. Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes[J]. Appl. Phys. Lett., 2003, 83(24):4906-4908.
LV Q J, LIU J L, MO C L, et al. Realization of highly efficient InGaN green LEDs with sandwich-like multiple quantum well structure:role of enhanced interwell carrier transport[J]. ACS Photonics, 2019, 6(1):130-138.
0
浏览量
153
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构