浏览全部资源
扫码关注微信
1.太原理工大学 物理与光电工程学院,山西 太原 030024
2.中国科学院高能物理研究所 北京同步辐射装置,北京 100049
[ "时秋峰(1983-),男,河北沧州人,博士,讲师,2014年于北京交通大学光电子技术研究所获得博士学位,主要从事新型发光材料设计与发光机理的研究。E-mail: shiqiufeng@tyut.edu.cn" ]
纸质出版日期:2021-11-01,
收稿日期:2021-08-26,
修回日期:2021-09-13,
扫 描 看 全 文
时秋峰, 王磊, 郭海洁, 等. 真空紫外光及X射线激发下Pr3+掺杂Ba3La(PO4)3 发光性质[J]. 发光学报, 2021,42(11):1756-1762.
Qiu-feng SHI, Lei WANG, Hai-jie GUO, et al. Luminescence Properties of Pr3+ Doped in Ba3La(PO4)3 with Vacuum Ultraviolet and X-ray Excitation[J]. Chinese Journal of Luminescence, 2021,42(11):1756-1762.
时秋峰, 王磊, 郭海洁, 等. 真空紫外光及X射线激发下Pr3+掺杂Ba3La(PO4)3 发光性质[J]. 发光学报, 2021,42(11):1756-1762. DOI: 10.37188/CJL.20210281.
Qiu-feng SHI, Lei WANG, Hai-jie GUO, et al. Luminescence Properties of Pr3+ Doped in Ba3La(PO4)3 with Vacuum Ultraviolet and X-ray Excitation[J]. Chinese Journal of Luminescence, 2021,42(11):1756-1762. DOI: 10.37188/CJL.20210281.
Pr
3+
4f5d具有大的辐射跃迁速率,是高效快响应闪烁体材料较有前景的发光中心离子。本文采用高温固相法制备了Pr
3+
掺杂Ba
3
La(PO
4
)
3
(BLP)光转换材料,对其物相、真空紫外发光性质、X射线激发发光性质、发光衰减特性和发光热稳定性进行了表征。结果表明,BLP∶Pr
3+
具有高效的Pr
3+
4f5d宽带发光,发光寿命为~15 ns,且具有较好的发光热稳定性。在基质172 nm激发下,存在基质到Pr
3+
4f5d的能量传递,而在X射线激发下可能受表面缺陷影响未发现明显的Pr
3+
4f5d发光。本文研究结果表明,BLP∶Pr
3+
在作为真空紫外到UV-C光转换材料方面具有潜在的应用价值。本研究对于设计新型快响应闪烁体具有一定的指导意义。
The radiative transition rate of Pr
3+
4f5d is large
which makes it as a promising luminescence center of fast scintillators. Samples of Ba
3
La(PO
4
)
3
(BLP) activated with Pr
3+
were prepared through high temperature solid state method and characterized by XRD
temperature-dependent luminescence spectra upon VUV-UV and X-ray excitations and decay curves. Efficient and thermal stable Pr
3+
4f5d broad band emission with decay time of ~15 ns was observed. There is energy transfer from host to Pr
3+
4f5d upon excitation at 172 nm
however
the energy transfer is absent upon X-ray excitation which is attributed to influence of defects on surface. The results indicate that BLP∶Pr
3+
could be applied as an efficient VUV to UV-C converting material. In addition
the research is also important for designing novel fast scintillators.
真空紫外光Pr3+4f5d能量传递衰减曲线基质发光
vacuum ultravioletPr3+4f5denergy transferdecay curveshost luminescence
NIKL M, YOSHIKAWA A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection[J]. Adv. Opt. Mater., 2015, 3(4): 463-481.
RONDA C, WIECZOREK H, KHANIN V, et al. Review—scintillators for medical imaging:a tutorial overview[J]. ECS J. Solid State Sci. Technol., 2016, 5(1): R3121-R3125.
DUJARDIN C, AUFFRAY E, BOURRET-COURCHESNE E, et al. Needs, trends, and advances in inorganic scintillators[J]. IEEE Trans. Nucl. Sci., 2018, 65(8): 1977-1997.
CHEN Q S, WU J, OU X Y, et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561(7721): 88-93.
IVANOVSKIKH K V, SHI Q F, BETTINELLI M, et al. Unraveling Pr3+ 5d-4f emission in LiLa9(SiO4)6O2 crystals doped with Pr3+ ions[J]. Opt. Mater., 2018, 79: 108-114.
ZHU W J, MA W B, SU Y R, et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators[J]. Light Sci. Appl., 2020, 9(1): 112-1-10.
FOSTER C, WU Y T, STAND L, et al. Czochralski growth and scintillation properties of Li+, Na+, and K+ codoped(Lu0.75, Y0.25)3Al5O12∶Pr3+ single crystals[J]. J. Cryst. Growth, 2020, 532: 125408-1-7.
SCHRÖDER F, FISCHER S, JÜSTEL T. X-ray and VUV excitation studies on Pr3+ activated Li2CaSiO4[J]. J. Lumin., 2021, 235: 118046-1-9.
CASTAING V, ARROYO E, BECERRO A I, et al. Persistent luminescent nanoparticles:challenges and opportunities for a shimmering future[J]. J. Appl. Phys., 2021, 130(8): 080902-1-16.
ZYCH A, DE LANGE M, DE MELLO DONEGÁ C, et al. Analysis of the radiative lifetime of Pr3+ d-f emission[J]. J. Appl. Phys., 2012, 112(1): 013536-1-12.
WU Y T, REN G H. Effects of Gd/Lu ratio on the luminescent properties of Pr3+ activated (Gd, Lu)3Ga3Al2O12[J]. ECS J. Solid State Sci. Technol., 2013, 2(3): R49-R55.
SREEBUNPENG K, CHEWPRADITKUL W, BABIN V, et al. Scintillation response of Y3Al5O12∶Pr3+ single crystal scintillators[J]. Radiat. Meas., 2013, 56: 94-97.
DROZDOWSKI W, BRYLEW K, WOJTOWICZ A J, et al. 33 000 photons per MeV from mixed (Lu0.75Y0.25)3Al5O12∶Pr scintillator crystals[J]. Opt. Mater. Express, 2014, 4(6): 1207-1212.
SREEBUNPENG K, CHEWPRADITKUL W, NIKL M. Intrinsic light yield and light loss coefficient of LuAG∶Pr under excitation with α-and γ-rays[J]. Key Eng. Mater., 2016, 675-676: 768-771.
NARGELAS S, DOSOVITSKIY G, KORZHIK M, et al. Role of inter- and intraconfigurational transitions of Pr3+ ion in nonequilibrium carrier relaxation in garnet-type scintillators[J]. Opt. Mater., 2021, 111: 110676-1-6.
武彤, 王玲, 贺欢, 等. Lu3Al5O12基闪烁陶瓷研究进展[J]. 发光学报, 2021, 42(7): 917-937.
WU T, WANG L, HE H, et al. Research progress of Lu3Al5O12-based scintillation ceramics[J]. Chin. J. Lumin., 2021, 42(7): 917-937. (in Chinese)
NIKL M, PEJCHAL J, MIHOKOVA E, et al. Antisite defect-free Lu3(GaxAl1-x)5O12∶Pr scintillator[J]. Appl. Phys. Lett., 2006, 88(14): 141916-1-3.
康茹, 张绍安, 练惠旺, 等. 长余辉纳米诊疗剂的设计策略与应用研究进展[J]. 发光学报, 2020, 41(12): 1614-1626.
KANG R, ZHANG S A, LIAN H W, et al. Research progress on design strategy and application of persistent luminescence nanotheranostics[J]. Chin. J. Lumin., 2020, 41(12): 1614-1626. (in Chinese)
YANG Y M, LI Z Y, ZHANG J Y, et al. X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions[J]. Light Sci. Appl., 2018, 7(1): 88-1-11.
PUSTOVAROV V A, IVANOVSKIKH K V, KISELEV S A, et al. Testing performance of Pr3+-doped KLuP2O7 upon UV-, synchrotron X-ray and cathode-ray excitation[J]. Opt. Mater., 2020, 108: 110234-1-8.
KEIL J N, JENNEBOER H, JÜSTEL T. Temperature dependent luminescence of Pr3+ doped NaCaPO4[J]. J. Lumin., 2021, 238: 118307-1-7.
ZHOU W J, GU M, OU Y Y, et al. Concentration-driven selectivity of energy transfer channels and color tunability in Ba3La(PO4)3∶Tb3+, Sm3+ for warm white LEDs[J]. Inorg. Chem., 2017, 56(13): 7433-7442.
YU R J, MI NOH H, MOON B K, et al. Synthesis and luminescence properties of a novel red-emitting phosphor Ba3La-(PO4)3∶Eu3+ for solid-state lighting[J]. J. Alloys Compd., 2013, 576: 236-241.
HOU D J, LIANG H B, XIE M B, et al. Bright green-emitting, energy transfer and quantum cutting of Ba3Ln(PO4)3∶Tb3+(Ln=La, Gd) under VUV-UV excitation[J]. Opt. Express, 2011, 19(12): 11071-11083.
ZHANG C H, LIANG H B, ZHANG S, et al. Efficient sensitization of Eu3+ emission by Tb3+ in Ba3La(PO4)3 under VUV-UV excitation:energy transfer and tunable emission[J]. J. Phys. Chem. C, 2012, 116(30): 15932-15937.
SHI Q F, HUANG Y, IVANOVSKIKH K V, et al. Luminescence properties and host sensitization study of Ba3La(PO4)3∶Ce3+ with (V)UV and X-ray excitation[J]. J. Alloys Compd., 2020, 817: 152704-1-7.
LIU W G, ZHU Q, WANG X J, et al. Multi-color luminescence and thermal stability of eulytite-type Ba3La(PO4)3∶Ce3+, Mn2+ phosphors via gel-combustion[J]. J. Alloys Compd., 2019, 787: 495-502.
BARBIER J. Structural refinements of eulytite-type Ca3Bi(PO4)3 and Ba3La(PO4)3[J]. J. Solid State Chem., 1992, 101(2): 249-256.
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr. A, 1976, 32(5): 751-767.
FEOFILOV S P, ZHOU Y, SEO H J, et al. Host sensitization of Gd3+ ions in yttrium and scandium borates and phosphates:application to quantum cutting[J]. Phys. Rev. B, 2006, 74(8): 085101-1-9.
CARRASCO I, BARTOSIEWICZ K, PICCINELLI F, et al. Structural effects and 5d→4f emission transition shifts induced by Y co-doping in Pr-doped K3Lu1-xYx(PO4)2[J]. J. Lumin., 2017, 189: 113-119.
0
浏览量
219
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构