浏览全部资源
扫码关注微信
桂林理工大学 材料科学与工程学院,广西有色金属及特色材料加工重点实验室,广西 桂林 541004
[ "蒙铭周(1995-),男,广东肇庆人,硕士研究生,2020年于岭南师范学院获得学士学位,主要从事稀土上转换纳米发光材料方面的研究。E-mail: mengmingzhou@163.com" ]
[ "欧俊(1963-),男,广西桂林人,博士,研究员,2010年于四川大学获得博士学位,主要从事生物纳米医用功能材料等方面的研究。E-mail: gloujun@glut.edu.cn" ]
纸质出版日期:2021-11-01,
收稿日期:2021-07-05,
修回日期:2021-07-20,
扫 描 看 全 文
蒙铭周, 张瑞, 法信蒙, 等. Ce3+掺杂对NaYF4∶Yb3+,Tm3+纳米粒子上转换发光性能的影响及其荧光温度特性应用[J]. 发光学报, 2021,42(11):1763-1773.
Ming-zhou MENG, Rui ZHANG, Xin-meng FA, et al. Effect of Ce3+ Doping on Upconversion Luminescence of NaYF4∶Yb3+,Tm3+ Nanoparticles and Application of Fluorescence Temperature Characteristics[J]. Chinese Journal of Luminescence, 2021,42(11):1763-1773.
蒙铭周, 张瑞, 法信蒙, 等. Ce3+掺杂对NaYF4∶Yb3+,Tm3+纳米粒子上转换发光性能的影响及其荧光温度特性应用[J]. 发光学报, 2021,42(11):1763-1773. DOI: 10.37188/CJL.20210227.
Ming-zhou MENG, Rui ZHANG, Xin-meng FA, et al. Effect of Ce3+ Doping on Upconversion Luminescence of NaYF4∶Yb3+,Tm3+ Nanoparticles and Application of Fluorescence Temperature Characteristics[J]. Chinese Journal of Luminescence, 2021,42(11):1763-1773. DOI: 10.37188/CJL.20210227.
采用溶剂热法制备了一系列不同Ce
3+
含量的Yb
3+
/Tm
3+
/Ce
3+
共掺NaYF
4
纳米粒子。样品在980 nm激光激发下,可以观察到强烈的上转换蓝色荧光。探究了不同Ce
3+
含量对发光强度的影响,发现在Ce
3+
含量从0%增加到0.5%的过程中,紫外到可见的上转换发光随着Ce
3+
浓度的增加先增强后减弱,在0.2%时荧光达到最强,比不掺Ce
3+
时荧光增强高达5倍左右,其中475 nm的蓝光更是增强了6倍。此外,对其机理进行了深入细致的探究,一方面,掺杂Ce
3+
后,Tm
3+
中的(
3
F
3
3
H
4
)与Ce
3+
中的(
2
F
7/2
2
F
5/2
)发生交叉弛豫,有效地防止了电子跃迁回到基态,以致整体荧光明显增强;另一方面,当掺入Ce
3+
后,形成的(Yb
3+
- Yb
3+
- Ce
3+
)Trimers把能量传递给
1
G
4
能级,发出475 nm的蓝光,导致蓝光很强。将其应用于荧光强度比测温,绝对灵敏度高达0.035 0 K
-1
。
A series of Yb
3+
/Tm
3+
/Ce
3+
co-doped NaYF
4
nanoparticles with different Ce
3+
contents were produced by solvothermal method. Strong upconversion blue fluorescence can be observed under 980 nm laser excitation. The influence of different Ce
3+
content on the luminescence intensity was investigated. It was found that the upconversion luminescence from UV to visible enhanced firstly and then weakened with the increase of Ce
3+
concentration when the mole fraction of Ce
3+
increased from 0% to 0.5%. The fluorescence intensity reached the maximum at 0.2%
which was about 5 times stronger than that without Ce
3+
doping
and the blue light at 475 nm was enhanced by 6 times. In addition
the mechanism was explored in detail. On the one hand
the cross relaxation between(
3
F
3
3
H
4
) in Tm
3+
and (
2
F
7/2
2
F
5/2
) in Ce
3+
occured after doping Ce
3+
which effectively prevented the electron transition from going back to the ground state
resulting in the overall fluorescence enhancement. On the other hand
the (Yb
3+
- Yb
3+
- Ce
3+
) Trimers formed by doping Ce
3+
transfered energy to
1
G
4
level and emitted 475 nm blue light
which led to strong blue light. When it was applied to the fluorescence intensity ratio thermometry measurement
the absolute sensitivity was as high as 0.035 0 K
-1
.
Ce3+掺杂上转换发光强蓝光(Yb3+- Yb3+- Ce3+)Trimers荧光强度比测温
Ce3+ dopedupconversion luminescencestrong blue light(Yb3+- Yb3+- Ce3+) Trimersfluorescence intensity ratio thermometry
AUZEL F. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chem. Rev., 2004, 104(1): 139-174.
DONG H, SUN L D, YAN C H. Energy transfer in lanthanide upconversion studies for extended optical applications[J]. Chem. Soc. Rev., 2015, 44(6): 1608-1634.
WU M, YAN L, WANG T, et al. Controlling red color-based multicolor upconversion through selective photon blocking[J]. Adv. Funct. Mater., 2019, 29(25): 1804160-1-11.
OU J, ZHENG W H, XIAO Z Y, et al. Core-shell materials bearing iron(Ⅱ) carbonyl units and their CO-release via an upconversion process[J]. J. Mater. Chem. B, 2017, 5(41): 8161-8168.
WANG Y, GAI S L, NIU N, et al. Synthesis of NaYF4 microcrystals with different morphologies and enhanced up-conversion luminescence properties[J]. Phys. Chem. Chem. Phys., 2013, 15(39): 16795-16805.
LEI L, CHEN D Q, XU J, et al. Highly intensified upconversion luminescence of Ca2+-doped Yb/Er∶NaGdF4 nanocrystals prepared by a solvothermal route[J]. Chem. Asian J., 2014, 9(3): 728-733.
SUYVER J F, GRIMM J, KRAMER K W, et al. Highly efficient near-infrared to visible up-conversion process in NaYF4∶Er3+, Yb3+[J]. J. Lumin., 2005, 114(1): 53-59.
WANG F, LIU X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chem. Soc. Rev., 2009, 38(4): 976-989.
YI G S, CHOW G M. Water-soluble NaYF4∶Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence[J]. Chem. Mater., 2007, 19(3): 341-343.
SHEN J, SUN L D, YAN C H. Luminescent rare earth nanomaterials for bioprobe applications[J]. Dalton Trans., 2008, (42): 5687-5697.
WANG L Y, LI Y D. Green upconversion nanocrystals for DNA detection[J]. Chem. Commun., 2006, (24): 2557-2559.
HU H, XIONG L Q, ZHOU J, et al. Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells[J]. Chem. Eur. J., 2009, 15(14): 3577-3584.
WANG F, LIU X G. Upconversion multicolor fine-tuning:visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles[J]. J. Am. Chem. Soc., 2008, 130(17): 5642-5643.
ZHAO Q, SHAO B Q, LÜ W, et al. Doping alkaline-earth:a strategy of stabilizing hexagonal GdF3 at room temperature[J]. Dalton Trans., 2013, 42(43): 15482-15488.
LEI L, CHEN D Q, HUANG P, et al. Modifying the size and uniformity of upconversion Yb/Er∶NaGdF4 nanocrystals through alkaline-earth doping[J]. Nanoscale, 2013, 5(22): 11298-11305.
WANG M, MI C C, WANG W X, et al. Immunolabeling and NIR-excited fluorescent imaging of hela cells by using NaYF4∶Yb, Er upconversion nanoparticles[J]. ACS Nano, 2009, 3(6): 1580-1586.
HAASE M, SCHÄFER H. Upconverting nanoparticles[J]. Angew. Chem. Int. Ed., 2011, 50(26): 5808-5829.
WANG F, HAN Y, LIM C S, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping[J]. Nature, 2010, 463(7284): 1061-1065.
YAN X Y, LI Y J, SUN C Y, et al. Hydrogen production from absorption-enhanced steam gasification of Enteromorpha prolifera and its char using Ce-doped CaO material[J]. Fuel, 2021, 287: 119554-1-12.
YIN D X, YANG H, WANG S, et al. Ce-doped ZnCo2O4 nanospheres:synthesis, double enzyme-like performances, catalytic mechanism and fast colorimetric determination for glutathione[J]. Colloids Surf. A Physicochem. Eng. Aspects, 2020, 607: 125466.
PAN L, KOEHLER K, JACOBSOHN L G. Luminescence of undoped and Ce-doped hexagonal BiPO4[J]. J. Lumin., 2020, 228: 117626.
ZHOU J, LIU Q, FENG W, et al. Upconversion luminescent materials:advances and applications[J]. Chem. Rev., 2015, 115(1): 395-465.
杨南如. 无机非金属材料测试方法[M]. 武汉: 武汉工业大学出版社, 1990.
YANG N R.Testing Methods of Inorganic Nonmetallic Materials[M]. Wuhan: Wuhan University of Technology Press, 1990. (in Chinese)
JUDD B R. Optical absorption intensities of rare-earth ions[J]. Phys. Rev., 1962, 127(3): 750-761.
PATRA A, FRIEND C S, KAPOOR R, et al. Effect of crystal nature on upconversion luminescence in Er3+∶ZrO2 nanocrystals[J]. Appl. Phys. Lett., 2003, 83(2): 284-286.
WARREN B E. X-ray Diffraction[M]. New York: Dover Publications Inc. Press, 1990.
ZHANG X, TIAN G, YIN W Y, et al. Controllable generation of nitric oxide by near-infrared-sensitized upconversion nanoparticles for tumor therapy[J]. Adv. Funct. Mater., 2015, 25(20): 3049-3056.
房喻, 王辉. 荧光寿命测定的现代方法与应用[J]. 化学通报, 2001, 64(10): 631-636.
FANG Y, WANG H.Fluorescence lifetime measurements:modern methods and applications[J]. Chemistry, 2001, 64(10): 631-636. (in Chinese)
WU R Z, ZHOU J J, LEI L, et al. α-NaYF4∶Yb3+-Tm3+@CaF2 nanocrystals for NIR-to-NIR temperature sensing[J]. Chem. Phys. Lett., 2017, 667: 206-210.
SINGH B P, PARCHUR A K, NINGTHOUJAM R S, et al. Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions[J]. Phys. Chem. Chem. Phys., 2014, 16(41): 22665-22676.
LU H Y, HAO H Y, SHI G, et al. Optical temperature sensing in β-NaLuF4∶Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels[J]. RSC Adv., 2016, 6(60): 55307-55311.
SINGH P, SHAHI P K, RAI A, et al. Effect of Li+ ion sensitization and optical temperature sensing in Gd2O3∶Ho3+/Yb3+[J]. Opt. Mater., 2016, 58: 432-438.
LI H, ZHANG Y D, SHAO L, et al. High performance silica micro-tube optical temperature sensor based on β-NaLuF4∶Yb3+/Tm3+ nanocrystals[J]. Opt. Mater., 2017, 69: 238-243.
DU P, LUO L H, YU J S. Upconversion emission, cathodoluminescence and temperature sensing behaviors of Yb3+ ions sensitized NaY(WO4)2∶Er3+ phosphors[J]. Ceram. Int., 2016, 42(5): 5635-5641.
PEREIRA A F, KUMAR K U, SILVA W F, et al. Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers[J]. Sens. Actuators B Chem., 2015, 213: 65-71.
TIWARI S P, MAHATA M K, KUMAR K, et al. Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3∶Er3+/Yb3+ nano-composite phosphor[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 150: 623-630.
CHEN D Q, WAN Z Y, ZHOU Y, et al. Dual-phase glass ceramic:structure, dual-modal luminescence, and temperature sensing behaviors[J]. ACS Appl. Mater. Interfaces, 2015, 7(34): 19484-19493.
HUO L L, ZHOU J J, WU R Z, et al. Dual-functional β-NaYF4∶Yb3+, Er3+ nanoparticles for bioimaging and temperature sensing[J]. Opt. Mater. Express, 2016, 6(4): 1056-1064.
JOSHI C, DWIVEDI A, RAI S B. Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3∶Er3+/Yb3+ nano-crystalline phosphor[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 129: 451-456.
SONI A K, KUMARI A, RAI V K. Optical investigation in shuttle like BaMoO4∶Er3+-Yb3+ phosphor in display and temperature sensing[J]. Sens. Actuators B Chem., 2015, 216: 64-71.
KOCHANOWICZ M, DOROSZ D, ZMOJDA J, et al. Influence of temperature on upconversion luminescence in tellurite glass co-doped with Yb3+/Er3+ and Yb3+/Tm3+[J]. J. Lumin., 2014, 151: 155-160.
SUN Z, LIU G F, FU Z L, et al. Nanostructured La2O3∶Yb3+/Er3+:temperature sensing, optical heating and bio-imaging application[J]. Mater. Res. Bull., 2017, 92: 39-45.
DONG B, CAO B S, HE Y Y, et al. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides[J]. Adv. Mater., 2012, 24(15): 1987-1993.
TONG L L, LI X P, HUA R N, et al. Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4∶Yb3+/Er3+ nano-/micro-crystals derived from a microwave-assisted hydrothermal route[J]. J. Lumin., 2015, 167: 386-390.
SONI A K, RAI V K, KUMAR S, et al. Cooling in Er3+∶BaMoO4 phosphor on codoping with Yb3+ for elevated temperature sensing[J]. Sens. Actuators B Chem., 2016, 229: 476-482.
ZHENG K Z, SONG W Y, HE G H, et al. Five-photon UV upconversion emissions of Er3+ for temperature sensing[J]. Opt. Express, 2015, 23(6): 7653-7658.
POLLNAU M, GAMELIN D R, LÜTHI S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Phys. Rev. B, 2000, 61(5): 3337-3346.
TOU M J, LUO Z G, BAI S, et al. Sequential coating upconversion NaYF4∶Yb, Tm nanocrystals with SiO2 and ZnO layers for NIR-driven photocatalytic and antibacterial applications[J]. Mater. Sci. Eng. C, 2017, 70: 1141-1148.
ZHANG H, LI Y J, LIN Y C, et al. Composition tuning the upconversion emission in NaYF4∶Yb/Tm hexaplate nanocrystals[J]. Nanoscale, 2011, 3(3): 963-966.
QIN W P, LIU Z Y, SIN C N, et al. Multi-ion cooperative processes in Yb3+ clusters[J]. Light Sci. Appl., 2014, 3: e193-1-6.
LI Y Y, GUO J J, LIU X H, et al. White upconversion luminescence in CaF2∶Yb3+/Eu3+ powders via the incorporation of Y3+ ions[J]. Phys. Chem. Chem. Phys., 2016, 18(24): 16094-16097.
LIU X H, AIDILIBIKE T, GUO J J, et al. Upconversion luminescence of Sm2+ ions[J]. RSC Adv., 2017, 7(23): 14010-14014.
CARNALL W T, FIELDS P R, RAJNAK K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+[J]. J. Chem. Phys., 1968, 49(10): 4424-4442.
0
浏览量
866
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构