浏览全部资源
扫码关注微信
1.江苏大学 化学与化工学院,江苏 镇江 212013
2.江苏大学 环境与安全工程学院,江苏 镇江 212013
[ "张栋琪(1996-),男,江苏常熟人,硕士,2021年于江苏大学获得硕士学位,主要从事零维/二维半导体量子点基光催化剂的设计与合成及在光催化制氢中应用的研究。Email: 736111980@qq.com" ]
[ "刘艳红(1981-),女,湖南邵东人,博士,助理研究员,2009年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事基于量子点和二维材料的复合纳米结构的设计、制备及催化应用的研究。Email: liuyh@ujs.edu.cn" ]
[ "李丽霞(1978-),女,河北邯郸人,博士,副教授,2013年于南京理工大学获得博士学位,主要从事基于纳米金属和水凝胶等高性能复合催化剂的构筑及环境催化应用的研究。Email: qingpipa@ujs.edu.cn" ]
[ "毛宝东(1982-),男,山东荷泽人,博士,研究员,博士研究生导师,2012年于美国凯斯西储大学获得博士学位,主要从事环境友好新型量子点的光电性质调控、超快光谱动力学及光催化和电催化应用的研究。E-mail: maobd@ujs.edu.cn" ]
纸质出版日期:2021-08-01,
收稿日期:2021-06-08,
修回日期:2021-06-20,
扫 描 看 全 文
张栋琪, 倪俊朋, 陈启涛, 等. 半导体量子点和碳点基零维/二维异质结光催化剂构筑及应用[J]. 发光学报, 2021,42(8):1278-1296.
Dong-qi ZHANG, Jun-peng NI, Qi-tao CHEN, et al. Construction and Application of Semiconductor Quantum Dots and Carbon Dots Based 0D/2D Heterojunction Photocatalysts[J]. Chinese Journal of Luminescence, 2021,42(8):1278-1296.
张栋琪, 倪俊朋, 陈启涛, 等. 半导体量子点和碳点基零维/二维异质结光催化剂构筑及应用[J]. 发光学报, 2021,42(8):1278-1296. DOI: 10.37188/CJL.20210204.
Dong-qi ZHANG, Jun-peng NI, Qi-tao CHEN, et al. Construction and Application of Semiconductor Quantum Dots and Carbon Dots Based 0D/2D Heterojunction Photocatalysts[J]. Chinese Journal of Luminescence, 2021,42(8):1278-1296. DOI: 10.37188/CJL.20210204.
半导体量子点因其具有精准的尺寸调控、独特的光电特性、丰富的表面活性位点等优势,在光催化剂设计和机理研究中获得了广泛关注。与传统半导体量子点主要作为光吸收单元不同,新兴的碳点更是在增加光吸收、促进电荷分离和增加表面反应位点等光催化不同环节均展现出优异的应用潜力。然而,量子点光催化剂由于小尺寸带来电荷复合严重、易团聚、稳定性差等问题而限制了其光催化性能。解决这些问题的主要途径之一是将零维(0D)量子点负载到超薄的二维(2D)纳米片上,形成0D/2D纳米复合材料,使量子点更加分散和稳定,且2D纳米材料促进的加速电荷转移能够抑制光生电荷的复合,从而可以有效地改善量子点基光催化剂的催化活性和稳定性。本文系统阐述了半导体量子点和碳点基0D/2D异质结光催化剂的构筑及应用,着重讨论了不同类型0D/2D异质结的光催化作用机理及面临的挑战,最后对其未来发展进行了分析和展望。
Semiconductor quantum dots(QDs) have attracted much attention in the design and mechanism of photocatalysts due to their precise size control
unique photoelectric properties and abundant surface active sites. Unlike traditional semiconductor QDs that are mainly used as light absorption units
the emerging carbon dots show excellent application potential in different aspects of photocatalysis
such as enhancing light absorption
promoting charge separation
and increasing surface reaction sites. However
the small size of QDs photocatalysts also leads to serious charge recombination
easy agglomeration and poor stability
which severely limits their photocatalytic performance. One of the main pathways to solve these problems is to load zero dimensional(0D) QDs on ultra-thin two-dimensional(2D) nanosheets to form 0D/2D nanocomposites
which can make the QDs better dispersed and more stable. The accelerated charge transfer promoted by 2D nanosheets can inhibit the recombination of photogenerated charges carriers
which can subsequently improve the activity and stability of QDs-based photocatalysts. In this review
the construction and application of semiconductor QDs and carbon dots based 0D/2D heterojunction photocatalysts are systematically introduced
with special attention to the discussion of the mechanism and challenges of different types of 0D/2D heterojunction photocatalysts. Finally
future development is analyzed and prospected for the 0D/2D heterojunction photocatalysts.
光催化制氢0D/2D异质结半导体量子点碳点
photocatalysishydrogen production0D/2D heterojunctionsemiconductor quantum dotscarbon dots
WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J].Nat. Mater., 2009, 8(1): 76-80.
MA Y, WANG X L, JIA Y S, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations [J].Chem. Rev., 2014, 114(19): 9987-10043.
WANG W, XU X M, ZHOU W, et al. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting [J].Adv. Sci., 2017, 4(4): 1600371-1-21.
GIELEN D, BOSHELL F, SAYGIN D, et al. The role of renewable energy in the global energy transformation [J].Energy Strategy Rev., 2019, 24: 38-50.
MARTIN D J, REARDON P J, MONIZ S J, et al. Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system [J].J. Am. Chem. Soc., 2014, 136(36): 12568-12571.
WANG H L, ZHANG L S, CHEN Z G, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances [J].Chem. Soc. Rev., 2014, 43(15): 5234-5244.
LEE M G, KIM D H, SOHN W, et al. Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type Ⅱ heterojunction photoanodes for water oxidation [J].Nano Energy, 2016, 28: 250-260.
WANG Q L, WANG X K, YU Z H, et al. Artificial photosynthesis of ethanol using type-Ⅱ g-C3N4/ZnTe heterojunction in photoelectrochemical CO2 reduction system [J].Nano Energy, 2019, 60: 827-835.
WANG J Y, GUAN Y J, YU X G, et al. Photoelectrocatalytic reduction of CO2 to paraffin using p-n heterojunctions [J].Iscience, 2020, 23(1): 100768-1-23.
JIANG W S, ZONG X P, AN L, et al. Consciously constructing heterojunction or direct Z-scheme photocatalysts by regulating electron flow direction [J].ACS Catal., 2018, 8(3): 2209-2217.
LI K, CHAI B, PENG T Y, et al. Preparation of AgIn5S8/TiO2 heterojunction nanocomposite and its enhanced photocatalytic H2 production property under visible light [J].ACS Catal., 2013, 3(2): 170-177.
JO W K, NATARAJAN T S. Facile synthesis of novel redox-mediator-free direct Z-Scheme CaIn2S4 marigold-flower-like/TiO2 photocatalysts with superior photocatalytic efficiency [J].ACS Appl. Mater. Interfaces, 2015, 7(31): 17138-17154.
WANG Y Z, CHEN D, HU Y Q, et al. An artificially constructed direct Z-scheme heterojunction: WO3 nanoparticle decorated ZnIn2S4 for efficient photocatalytic hydrogen production [J].Sustain. Energy Fuels, 2020, 4(4): 1681-1692.
CAO R Y, YANG H C, ZHANG S W, et al. Engineering of Z-scheme 2D/3D architectures with Ni(OH)2 on 3D porous g-C3N4 for efficiently photocatalytic H2 evolution [J].Appl. Catal. B:Environ., 2019, 258: 117997-1-12.
BRUS L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state [J].J. Chem. Phys., 1984, 80(9): 4403-4409.
ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots [J].Science, 1996, 271(5251): 933-937.
WANG W, FENG W L, DU J, et al. Cosensitized quantum dot solar cells with conversion efficiency over 12% [J].Adv. Mater., 2018, 30(11): 1705746-1-7.
OUELLETTE O, LESAGE-LANDRY A, SCHEFFEL B, et al. Spatial collection in colloidal quantum dot solar cells [J].Adv. Funct. Mater., 2020, 30(1): 1908200-1-7.
DONG H, XU F, SUN Z Q, et al. In situ interface engineering for probing the limit of quantum dot photovoltaic devices [J].Nat. Nanotechnol., 2019, 14(10): 950-956.
HAN C Y, LEE S H, SONG S W, et al. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices [J].ACS Energy Lett., 2020, 5(5): 1568-1576.
WU L Y, MU Y F, GUO X X, et al. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction [J].Angew. Chem. Int. Ed., 2019, 58(28): 9491-9495.
RANA M, CHOWDHURY P. L-glutathione capped CdSeS/ZnS quantum dot sensor for the detection of environmentally hazardous metal ions [J].J. Lumin., 2019, 206: 105-112.
FAN F J, WU L, YU S H. Energetic Ⅰ-Ⅲ-Ⅵ2 and I2-Ⅱ-Ⅳ-Ⅵ4 nanocrystals: synthesis, photovoltaic and thermoelectric applications [J].Energy Environ. Sci., 2014, 7(1): 190-208.
SMITH A M, NIE S M. Semiconductor nanocrystals: structure, properties, and band gap engineering [J].Acc. Chem. Res., 2010, 43(2): 190-200.
OMATA T, NOSE K, OTSUKA-YAO-MATSUO S. Size dependent optical band gap of ternary Ⅰ-Ⅲ-Ⅵ2 semiconductor nanocrystals [J].J. Appl. Phys., 2009, 105(7): 073106-1-5.
YOU Z Y, LIAO Y L, LI X, et al. State-of-the-art recent progress in MXene-based photocatalysts: a comprehensive review [J].Nanoscale, 2021, 13(21): 9463-9504.
YANG Y L, ZHANG D N, XIANG Q J. Plasma-modified Ti3C2Tx/CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production [J].Nanoscale, 2019, 11(40): 18797-18805.
BUJAK P, WRÓBEL Z, PENKALA M, et al. Highly luminescent Ag-In-Zn-S quaternary nanocrystals: growth mechanism and surface chemistry elucidation [J].Inorg. Chem., 2019, 58(2): 1358-1370.
JUNG S, CHA J H, JUNG D Y. Synthesis of oleic acid-capped CuInS2 nanocrystals from bimetallic hydroxide precursor[J].Thin Solid Films, 2016, 603: 243-248.
YU S, FAN X B, WANG X, et al. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots [J].Nat. Commun., 2018, 9(1): 4009-1-10.
YANG Y L, LIU Y H, MAO B D, et al. Facile surface engineering of Ag-In-Zn-S quantum dot photocatalysts by mixed-ligand passivation with improved charge carrier lifetime [J].Catal. Lett., 2019, 149(7): 1800-1812.
BAKER S N, BAKER G A. Luminescent carbon nanodots: emergent nanolights[J].Angew. Chem., Int. Ed., 2010, 49(38): 6726-6744.
ZUO P L, LU X H, SUN Z G, et al. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots [J].Microchim. Acta, 2016, 183(2): 519-542.
TUERHONG M, XU Y, YIN X B. Review on carbon dots and their applications [J].Chin. J. Anal. Chem., 2017, 45(1): 139-150.
CAO L, SAHU S, ANILKUMAR P, et al. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond [J].J. Am. Chem. Soc., 2011, 133(13): 4754-4757.
ANWAR S, DING H Z, XU M S, et al. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots [J].ACS Appl. Bio. Mater., 2019, 2(6): 2317-2338.
HOLA K, ZHANG Y, WANG Y, et al. Carbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronics [J].Nano Today, 2014, 9(5): 590-603.
ZHUO S J, SHAO MW, LEE S T. Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis [J].ACS Nano, 2012, 6(2): 1059-1064.
ZHANG Z J, ZHENG T T, LI X M, et al. Progress of carbon quantum dots in photocatalysis applications [J].Part. Part. Syst. Charact., 2016, 33(8): 457-472.
LIU W J, LI C, REN Y J, et al. Carbon dots: surface engineering and applications [J].J. Mater. Chem. B, 2016, 4(35): 5772-5788.
ROSSO C, FILIPPINI G, PRATO M. Carbon dots as nano-organocatalysts for synthetic applications [J].ACS Catal., 2020, 10(15): 8090-8105.
CAILOTTO S, NEGRATO M, DANIELE S, et al. Carbon dots as photocatalysts for organic synthesis: metal-free methylene-oxygen-bond photocleavage [J].Green Chem., 2020, 22(4): 1145-1149.
HUANG H, YANG S W, LIU Y, et al. Photocatalytic polymerization from amino acid to protein by carbon dots at room temperature [J].ACS Appl. Bio. Mater., 2019, 2(11): 5144-5153.
FARZANEH F, AGHABALI S, AZARKAMANZAD Z. Polyamine-functionalized carbon dots as active catalyst for Knoevenagel condensation reactions [J].Reac. Kinet. Mech. Cat., 2020, 130(2): 1009-1025.
WEI R B, HUANG Z L, GU G H, et al. Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production [J].Appl. Catal. B:Environ., 2018, 231: 101-107.
LI H T, LIU R H, LIAN S Y, et al. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction [J].Nanoscale, 2013, 5(8): 3289-3297.
WU Q, CAO J, WANG X, et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater [J].Nat. Commun., 2021, 12: 483-1-10.
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J].Science, 2004, 306(5696): 666-669.
CHHOWALLA M, LIU Z F, ZHANG H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets [J].Chem. Soc. Rev., 2015, 44(9): 2584-2586.
JIANG W J, WANG H, ZHANG X D, et al. Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis [J].Sci. China Chem., 2018, 61(10): 1205-1213.
KHAN K, TAREEN A K, ASLAM M, et al. Recent developments in emerging two-dimensional materials and their applications [J].J. Mater. Chem. C, 2020, 8(2): 387-440.
BUTLER S Z, HOLLEN S M, CAO L Y, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene [J].ACS Nano, 2013, 7(4): 2898-2926.
GUNJAKAR J L, KIM I Y, LEE J M, et al. Self-assembly of layered double hydroxide 2D nanoplates with graphenenanosheets: an effective way to improve the photocatalytic activity of 2D nanostructured materials for visible light-induced O2 generation [J].Energy Environ. Sci., 2013, 6(3): 1008-1017.
CHABOT V, HIGGINS D, YU A P, et al. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment [J].Energy Environ. Sci., 2014, 7(5): 1564-1596.
YANG Z W, XU X Q, LIANG X X, et al. Construction of heterostructured MIL-125/Ag/g-C3N4 nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions [J].Appl. Catal. B:Environ., 2017, 205: 42-54.
WANG Q, WANG W, ZHONG L L, et al. Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation [J].Appl. Catal. B:Environ., 2018, 220: 290-302.
YAN J, FAN Y M, LIAN J B, et al. Kinetics and mechanism of enhanced photocatalytic activity employing ZnS nanospheres/graphene-like C3N4 [J].Mol.r Catal., 2017, 438: 103-112.
LI Y, CUI W Q, LIU L, et al. Removal of Cr (Ⅵ) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction [J].Appl. Catal. B:Environ., 2016, 199: 412-423.
YANG J J, CHEN D M, ZHU Y, et al. 3D-3D porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation [J].Appl. Catal. B:Environ., 2017, 205: 228-237.
LI Y L, ZHOU J, FAN Y D, et al. Preparation of environment-friendly 3D eggshell membrane-supported anatase TiO2 as a reusable photocatalyst for degradation of organic dyes [J].Chem. Phys. Lett., 2017, 689: 142-147.
EL-MAGHRABI H H, BARHOUM A, NADA A A, et al. Synthesis of mesoporous core-shell CdS@TiO2 (0D and 1D) photocatalysts for solar-driven hydrogen fuel production [J].J. Photochem. Photobiol. A: Chem., 2018, 351: 261-270.
JIANG D L, WANG T Y, XU Q, et al. Perovskite oxide ultrathin nanosheets/g-C3N4 2D-2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline [J].Appl. Catal. B:Environ., 2017, 201: 617-628.
LI B Y, CAO Z H, WANG S X, et al. BiVO4 quantum dot-decorated BiPO4 nanorods 0D/1D heterojunction for enhanced visible-light-driven photocatalysis [J].Dalton Trans., 2018, 47(30): 10288-10298.
WANG W N, HUANG C X, ZHANG C Y, et al. Controlled synthesis of upconverting nanoparticles/ZnxCd1-xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light [J].Appl. Catal. B:Environ., 2018, 224: 854-862.
SHI N, CHENG W, ZHOU H, et al. Facile synthesis of monodisperse Co3O4 quantum dots with efficient oxygen evolution activity [J].Chem. Commun., 2015, 51(7): 1338-1340.
ČOMOR M I, NEDELJKOVIĆ J M. Enhanced photocorrosion stability of colloidal cadmium sulphide-silica nanocomposites [J].J. Mater. Sci., 1999, 18(19): 1583-1585.
YAMASHITA S I, HAMADA M, NAKANISHI S, et al. Auger Ionization beats photo-oxidation of semiconductor quantum dots: extended stability of single-molecule photoluminescence [J].Angew. Chem. Int. Ed., 2015, 54(13): 3892-3896.
NIKITSKIY I, GOOSSENS S, KUFER D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor [J].Nat. Commun., 2016, 7(1): 11954-1-8.
FANG Z, WANG Y B, SONG J B, et al. Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphenenanosheets toward highly efficient photocatalytic H2 evolution [J].Nanoscale, 2013, 5(20): 9830-9838.
XIAO F X, MIAO J W, LIU B. Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications [J].J. Am. Chem. Soc., 2014, 136(4): 1559-1569.
CAO A N, LIU Z, CHU S S, et al. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials [J].Adv. Mater., 2010, 22(1): 103-106.
MA X Y, XIANG Q J, LIAO Y L, et al. Visible-light-driven CdSe quantum dots/graphene/TiO2 nanosheets composite with excellent photocatalytic activity for E. coli disinfection and organic pollutant degradation [J].Appl. Surf. Sci., 2018, 457: 846-855.
GAO Y, XU B T, CHERIF M, et al. Atomic insights for Ag interstitial/substitutional doping into ZnIn2S4 nanoplates and intimate coupling with reduced graphene oxide for enhanced photocatalytic hydrogen production by water splitting [J].Appl. Catal. B:Environ., 2020, 279: 119403.
KARUNADASA H I, MONTALVO E, SUN Y J, et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation [J].Science, 2012, 335(6069): 698-702.
HINNEMANN B, MOSES P G, BONDE J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution [J].J. Am. Chem. Soc., 2005, 127(15): 5308-5309.
YAN Y, XIA B Y, GE X M, et al. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution [J].ACS Appl. Mater. Interfaces, 2013, 5(24): 12794-12798.
CHANG K, MEI Z W, WANG T, et al. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation [J].ACS Nano, 2014, 8(7): 7078-7087.
CHEN J Z, WU X J, YIN L S, et al. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution [J].Angew. Chem. Int. Ed., 2015, 54(4): 1210-1214.
KIM M, ANJUM M A R, CHOI M, et al. Covalent 0D-2D heterostructuring of Co9S8-MoS2 for enhanced hydrogen evolution in all pH electrolytes [J].Adv. Funct. Mater., 2020, 30(40): 2002536-1-11.
FENG R J, LEI W Y, SUI X Y, et al. Anchoring black phosphorus quantum dots on molybdenum disulfide nanosheets: a 0D/2D nanohybrid with enhanced visible-and NIR-light photoactivity [J].Appl. Catal. B:Environ., 2018, 238: 444-453.
LIU X Y, CHEN H, WANG R L, et al. 0D-2D quantum dot: metal dichalcogenide nanocomposite photocatalyst achieves efficient hydrogen generation [J].Adv. Mater., 2017, 29(22): 1605646-1-8.
ZHANG D Q, CAO W J, MAO B D, et al. Efficient 0D/2D heterostructured photocatalysts with Zn-AgIn5S8 quantum dots embedded in ultrathin NiS nanosheets for hydrogen production [J].Ind. Eng. Chem. Res., 2020, 59(37): 16249-16257.
YE M Y, ZHAO Z H, HU Z F, et al. 0D/2D heterojunctions of vanadate quantum dots/graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis [J].Angew. Chem. Int. Ed., 2017, 56(29): 8407-8411.
WANG R, KONG X Y, ZHANG W T, et al. Mechanism insight into rapid photocatalytic disinfection of Salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures [J].Appl. Catal. B:Environ., 2018, 225: 228-237.
MA D D, SHI J W, ZOU Y J, et al. Highly efficient photocatalyst based on a CdS quantum dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting [J].ACS Appl. Mater. Interfaces, 2017, 9(30): 25377-25386.
QIN J Z, HU X, LI X Y, et al. 0D/2D AgInS2/MXene Z-scheme heterojunction nanosheets for improved ammonia photosynthesis of N2 [J].Nano Energy, 2019, 61: 27-35.
YANG Y L, MAO B D, GONG G, et al. In-situ growth of Zn-AgIn5S8 quantum dots on g-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production [J].Int. J. Hydrogen Energ., 2019, 44(30): 15882-15891.
ZHANG D Q, MAO B D, LI D, et al. 0D/2D Z-scheme heterojunctions of Zn-AgIn5S8 QDs/α-Fe2O3 nanosheets for efficient visible-light-driven hydrogen production [J].Chem. Eng. J., 2021, 417: 128275.
LI Y, FENG X H, LU Z X, et al. Enhanced photocatalytic H2-production activity of C-dots modified g-C3N4/TiO2 nanosheets composites [J].J. Colloid Interf. Sci., 2018, 513: 866-876.
CHENG L, ZHANG H W, LI X, et al. Carbon-graphitic carbon nitride hybrids for heterogeneous photocatalysis [J].Small, 2021, 17: 2005231-1-22.
SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J].J. Am. Chem. Soc., 2006, 128(24): 7756-7757.
WANG Y F, HU A G. Carbon quantum dots: synthesis, properties and applications [J].J. Mater. Chem. C, 2014, 2(34): 6921-6939.
LIN L X, ZHANG S W. Creating high yield water soluble luminescent graphenequantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes [J].Chem. Commun., 2012, 48(82): 10177-10179.
LU K Q, XIN X, ZHANG N, et al. Photoredox catalysis over graphene aerogel-supported composites [J].J. Mater. Chem. A, 2018, 6(11): 4590-4604.
ZHANG Y H, ZHANG N, TANG Z R, et al. Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer [J].ACS Nano, 2012, 6(11): 9777-9789.
CAO L, WANG X, MEZIANI M J, et al. Carbon dots for multiphoton bioimaging [J].J. Am. Chem. Soc., 2007, 129(37): 11318-11319.
LI H T, HE X D, KANG Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design [J].Angew. Chem. Int. Ed., 2010, 49(26): 4430-4434.
KANG Z H, TSANG C H A, ZHANG Z D, et al. A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires [J].J. Am. Chem. Soc., 2007, 129: 5326-5327.
KANG Z H, TSANG C H A, WONG N B, et al. Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions [J].J. Am. Chem. Soc., 2007, 129(40): 12090-12091.
KANG Z H, LIU Y, TSANG C H A, et al. Water-soluble silicon quantum dots with wavelength-tunable photoluminescence [J].Adv. Mater., 2009, 21(6): 661-664.
YAO Y, LI G H, CISTON S, et al. Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity [J].Environ. Sci. Technol, 2008, 42(13): 4952-4957.
ZHANG M M, LAI C, LI B S, et al. Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: kinetics, intermediates, and mechanism insight [J].J. Catal., 2019, 369: 469-481.
DONG L M, LIU D Y, FU H Y, et al. Synthesis and photocatalytic activity of Fe3O4-WO3-CQD multifunctional system [J].J. Inorg. Organomet. Polym. Mater., 2019, 29(4): 1297-1304.
LUO B F, HONG Y Z, LI D, et al. Fabrication of 0D/2D carbon nitride quantum dots/SnNb2O6 ultrathin nanosheets with enhanced photocatalytic hydrogen production [J].Acs Sustainable Chem. Eng., 2018, 6(11): 14332-14339.
WANG F L, CHEN P, FENG Y P, et al. Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin [J].Appl. Catal. B:Environ., 2017, 207: 103-113.
LI D G, HUANG J X, LI R B, et al. Synthesis of a carbon dots modified g-C3N4/SnO2 Z-scheme photocatalyst with superior photocatalytic activity for PPCPs degradation under visible light irradiation [J].J. Hazard. Mater., 2021, 401: 123257-1-13.
YU J, LI X K, WU Q Y, et al. Effective low-temperature methanol aqueous phase reforming with metal-free carbon dots/C3N4 composites [J].ACS Appl. Mater. Interfaces, 2021, 13(21): 24702-24709.
ZHU C, LIU C A, FU Y J, et al. Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater [J].Appl. Catal. B:Environ., 2019, 242: 178-185.
WANG J J, TANG L, ZENG G M, et al. 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight [J].Appl. Catal. B:Environ., 2018, 222: 115-123.
LI J F, ZHONG C Y, HUANG J R, et al. Carbon dots decorated three-dimensionally ordered macroporous bismuth-doped titanium dioxide with efficient charge separation for high performance photocatalysis [J].J. Colloid Interf. Sci., 2019, 553: 758-767.
PAN J Q, YOU M Z, CHI C Y, et al. The two dimension carbon quantum dots modified porous g-C3N4/TiO2 nano-heterojunctions for visible light hydrogen production enhancement [J].Int. J. Hydrogen Energy, 2018, 43(13): 6586-6593.
KUANG L Y, ZHANG W. Enhanced hydrogen production by carbon-doped TiO2 decorated with reduced graphene oxide (rGO) under visible light irradiation [J].RSC Adv., 2016, 6(3): 2479-2488.
WANG X J, JIANG X, SHARMAN E, et al. Isolating hydrogen from oxygen in photocatalytic water splitting with a carbon-quantum-dot/carbon-nitride hybrid [J].J. Mater. Chem. A, 2019, 7(11): 6143-6148.
LI Q, CUI C, MENG H, et al. Visible-light photocatalytic hydrogen production activity of ZnIn2S4 microspheres using carbon quantum dots and platinum as dual co-catalysts [J].Chem.:Asian J., 2014, 9(7): 1766-1770.
ZHANG Y X, XU M J, LI H, et al. The enhanced photoreduction of Cr (Ⅵ) to Cr (Ⅲ) using carbon dots coupled TiO2 mesocrystals [J].Appl. Catal. B:Environ., 2018, 226: 213-219.
LIU J, LIU Y, LIU N Y, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway [J].Science, 2015, 347(6225): 970-974.
WU X Q, ZHAO J, WANG L P, et al. Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light [J].Appl. Catal. B:Environ., 2017, 206: 501-509.
0
浏览量
204
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构