浏览全部资源
扫码关注微信
1.中国科学院上海光学精密机械研究所 中国科学院强激光材料重点实验室,上海 201800
2.中国科学院大学,北京 100049
[ "孙炳恒(1995-),男,江苏连云港人,博士研究生,2020年于江苏师范大学获得硕士学位,主要从事透明光功能陶瓷应用的研究。E-mail: sunbingheng@siom.ac.cn" ]
[ "姜本学(1980-),男,山东青州人,博士,研究员,2007年于中国科学院上海光学精密机械研究所获得博士学位,主要从事激光与光电子材料的研究。E-mail:jiangbx@siom.ac.cn" ]
纸质出版日期:2021-10-01,
收稿日期:2021-03-22,
修回日期:2021-04-06,
扫 描 看 全 文
孙炳恒, 姜本学, 范金太, 等. 高显色激光照明用宽光谱远程荧光转换材料[J]. 发光学报, 2021,42(10):1585-1618.
Bing-heng SUN, Ben-xue JIANG, Jin-tai FAN, et al. Broadband-emitting Remote Color Convertors for High Color Rendering Laser-driven Lighting[J]. Chinese Journal of Luminescence, 2021,42(10):1585-1618.
孙炳恒, 姜本学, 范金太, 等. 高显色激光照明用宽光谱远程荧光转换材料[J]. 发光学报, 2021,42(10):1585-1618. DOI: 10.37188/CJL.20210104.
Bing-heng SUN, Ben-xue JIANG, Jin-tai FAN, et al. Broadband-emitting Remote Color Convertors for High Color Rendering Laser-driven Lighting[J]. Chinese Journal of Luminescence, 2021,42(10):1585-1618. DOI: 10.37188/CJL.20210104.
基于荧光陶瓷、荧光玻璃以及荧光晶体等远程荧光转换材料的新一代激光固态光源具有热稳定性高、热承载能力强、荧光特性稳定等特点,在汽车大灯、投影显示以及航天航海照明等领域具有广阔的应用前景。但其目前面临的瓶颈之一是难以实现可见光宽光谱发射,照明品质较低。本综述重点总结了近年来可应用于高显指、低色温激光白光光源的各类远程荧光转换材料的研究进展,分析了高流明密度激发下,激光光源光色品质下降的原因。阐述了现有单色和多色荧光体的光谱调控方案以及封装光源的显色指数、色温的提升效果。针对荧光转换材料需要重点解决的几个重要问题展开讨论,包括效能提升、高温猝灭和评判标准等三个方面。最后对宽光谱发射的远程荧光转换材料在固态照明与显示领域的应用前景进行了展望。
Featuring high thermal stability
strong heat bearing capacity and stable fluorescence property
the next-generation laser diode(LD) solid state lighting
structured by remote color convertors phosphor ceramics
phosphor in glass and phosphor crystals
has wide application in automobile headlamps
projection display
and space navigation lighting. However
the urgent bottleneck of this technology is hard to achieving broadband-emitting in visible light
resulting in poor lighting quality. In this paper
the recent progress of remote color convertors for high color rendering index(CRI) and low correlated color temperature(CCT) laser white light source is reviewed and summarized
and the reason for poorer lighting quality under the excitation of high lumen density laser is analyzed. The electronic luminescence(EL) spectrum regulation and improvement effect of CRI and CCT of laser lighting source are illustrated. Some important topics for color convertors
such as efficiency enhancement
high temperature quenching and evolution standard are also discussed. Finally
the development trend of remote color convertors with broadband-emitting in solid state lighting and display is prospected.
激光照明宽光谱发射光色品质固溶/掺杂多色复合
laser-driven lightingbroadband-emittinglight qualitysolid solution/dopingmulti color combination
SCHUBERT E F, KIM J K. Solid-state light sources getting smart[J].Science, 2005, 308(5726): 1274-1278.
PUST P, SCHMIDT P J, SCHNICK W. A revolution in lighting[J].Nat. Mater., 2015, 14(5): 454-458.
KIM Y H, ARUNKUMAR P, KIM B Y, et al. A zero-thermal-quenching phosphor[J].Nat. Mater., 2017, 16(5): 543-550.
TSAO J Y, CRAWFORD M H, COLTRIN M E, et al. Toward smart and ultra-efficient solid-state lighting[J].Adv. Opt. Mater., 2014, 2(9): 809-836.
WEISBUCH C. Review-on the search for efficient solid state light emitters: past, present, future[J].ECS J. Solid State Sci. Technol., 2020, 9(1): 016022.
SCHÜTT F, ZAPF M, SIGNETTI S, et al. Conversionless efficient and broadband laser light diffusers for high brightness illumination applications[J].Nat. Commun., 2020, 11(1): 1437-1-10.
JRWIERER J J, TSAO J Y. Advantages of Ⅲ-nitride laser diodes in solid-state lighting[J].Phys. Status Solidi (A), 2015, 212(5): 980-985.
GAO W N, XU Z Y, BI Y, et al. Present development and tendency of laser display technology[J].Strateg. Study Chin. Acad. Eng., 2020, 22(3): 85-91.
TRIVELLIN N, YUSHCHENKO M, BUFFOLO M, et al. Laser-based lighting: experimental analysis and perspectives[J].Materials, 2017, 10(10): 1166-1-18.
JRWIERER J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting[J].Laser Photonics Rev., 2013, 7(6): 963-993.
XIA Z G, LIU Q L. Progress in discovery and structural design of color conversion phosphors for LEDs[J].Prog. Mater. Sci., 2016, 84: 59-117.
GEORGE N C, DENAULT K A, SESHADRI R. Phosphors for solid-state white lighting[J].Ann. Rev. Mater. Res., 2013, 43: 481-501.
PHILLIPS J M, COLTRIN M E, CRAWFORD M H, et al. Research challenges to ultra-efficient inorganic solid-state lighting[J].Laser Photonics Rev., 2007, 1(4): 307-333.
田景玉, 张俊, 彭航宇, 等. 基于RGB三基色半导体激光的高功率白激光光源[J].发光学报, 2019, 40(10): 1254-1260.
TIAN J Y, ZHANG J, PENG H Y, et al. High power white laser source based on RGB diode laser[J].Chin. J. Lumin., 2019, 40(10): 1254-1260. (in Chinese)
NAIR G B, SWART H C, DHOBLE S J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): phosphor synthesis, device fabrication and characterization[J].Prog. Mater. Sci., 2020, 109: 100622-1-36.
LI G G, TIAN Y, ZHAO Y, et al. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs[J].Chem. Soc. Rev., 2015, 44(23): 8688-8713.
BERENDS A C, VAN DE HAAR M A, KRAMES M R. YAG∶Ce3+ phosphor: from micron-sized workhorse for general lighting to a bright future on the nanoscale[J].Chem. Rev., 2020, 120(24): 13461-13479.
WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives[J].Chem. Rev., 2018, 118(4): 1951-2009.
康健, 张乐, 单迎双, 等. 激光白光光源及其光学系统解析[J].应用光学, 2019, 40(5): 763-773.
KANG J, ZHANG L, SHAN Y S, et al. Laser white light source of its optical system analysis[J].J. Appl. Opt., 2019, 40(5): 763-773. (in Chinese)
YAO Q, HU P, SUN P, et al. YAG∶Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting[J].Adv. Mater., 2020, 32(19): 1907888-1-7.
XIANG R, LIANG X J, LI P Z, et al. A thermally stable warm WLED obtained by screen-printing a red phosphor layer on the LuAG∶Ce3+ PiG substrate[J].Chem. Eng. J., 2016, 306: 858-865.
VÍLLORA E G, ARJOCA S, INOMATA D, et al. Single-crystal phosphors for high-brightness white LEDs/LDs[C].Proceedings of SPIE 9768, Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting ⅩⅩ, San Francisco, 2016: 976805.
XIA Z G, MEIJERINK A. Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications[J].Chem. Soc. Rev., 2017, 46(1): 275-299.
SONG Y H, HAN G S, JI E K, et al. The novel design of a remote phosphor ceramic plate for white light generation in high power LEDs[J].J. Mater. Chem. C, 2015, 3(24): 6148-6152.
LI S X, WANG L, HIROSAKI N, et al. Color conversion materials for high-brightness laser-driven solid-state lighting[J].Laser Photonics Rev., 2018, 12(12): 1800173-1-29.
胡盼, 丁慧, 刘永福, 等. YAG∶Ce3+在激光照明应用中的研究进展[J].发光学报, 2020, 41(12): 1504-1528.
HU P, DING H, LIU Y F, et al. Recent progress of YAG∶Ce3+ for white laser diode lighting application[J].Chin. J. Lumin., 2020, 41(12): 1504-1528. (in Chinese)
SUN P, HU P, LIU Y F, et al. Broadband emissions from Lu2Mg2Al2Si2O12∶Ce3+ plate ceramic phosphors enable a high color-rendering index for laser-driven lighting[J].J. Mater. Chem. C, 2020, 8(4): 1405-1412.
CHEN L, LIN C C, YEH C W, et al. Light converting inorganic phosphors for white light-emitting diodes[J].Materials, 2010, 3(3): 2172-2195.
XIA Z G, XU Z H, CHEN M Y, et al. Recent developments in the new inorganic solid-state LED phosphors[J].Dalton Trans., 2016, 45(28): 11214-11232.
SETLUR A A, HEWARD W J, HANNAH M E, et al. Incorporation of Si4+-N3− into Ce3+ -doped garnets for warm white LED phosphors[J].Chem. Mater., 2008, 20(19): 6277-6283.
DU Q P, FENG S W, QIN H M, et al. Massive red-shifting of Ce3+ emission by Mg2+ and Si4+ doping of YAG∶Ce transparent ceramic phosphors[J].J. Mater. Chem. C, 2018, 6(45): 12200-12205.
LI S X, ZHU Q Q, WANG L, et al. CaAlSiN3∶Eu2+ translucent ceramic: a promising robust and efficient red color converter for solid state laser displays and lighting[J].J. Mater. Chem. C, 2016, 4(35): 8197-8205.
ZHANG Y J, ZHANG Z L, LIU X D, et al. A high quantum efficiency CaAlSiN3∶Eu2+ phosphor-in-glass with excellent optical performance for white light-emitting diodes and blue laser diodes[J].Chem. Eng. J., 2020, 401: 125983.
IKESUE A, AUNG Y L. Ceramic laser materials[J].Nat. Photonics, 2008, 2(12): 721-727.
NISHIURA S, TANABE S, FUJIOKA K, et al. Properties of transparent Ce∶YAG ceramic phosphors for white LED[J].Opt. Mater., 2011, 33(5): 688-691.
WEI N, LU T C, LI F, et al. Transparent Ce∶Y3Al5O12 ceramic phosphors for white light-emitting diodes[J].Appl. Phys. Lett., 2012, 101(6): 061902-1-4.
李江, 李万圆, 刘欣, 等. 固态照明/显示用荧光陶瓷研究进展[J].发光学报, 2021, 42(5): 580-604.
LI J, LI W Y, LIU X, et al. Research progress on phosphor ceramics for solid-state lighting/display[J].Chin. J. Lumin., 2021, 42(5): 580-604. (in Chinese)
SONG Y H, JI E K, JEONG B W, et al. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting[J].Sci. Rep., 2016, 6(1): 31206-1-7.
UEDA J, TANABE S. (INVITED) Review of luminescent properties of Ce3+-doped garnet phosphors: New insight into the effect of crystal and electronic structure[J].Opt. Mater.: X, 2019, 1: 100018-1-19.
HUA H, FENG S W, OUYANG Z Y, et al. YAGG∶Ce transparent ceramics with high luminous efficiency for solid-state lighting application[J].J. Adv. Ceram., 2019, 8(3): 389-398.
薛秉国, 吕清洋, 王婷婷, 等. 钆铝石榴石(GdAG)基发光材料研究进展[J].发光学报, 2020, 41(12): 1538-1553.
XUE B G, LYU Q Y, WANG T T, et al. Research progress of Gd3Al5O12-based luminescent materials[J].Chin. J. Lumin., 2020, 41(12): 1538-1553. (in Chinese)
HU S, LU C H, ZHOU G H, et al. Transparent YAG∶Ce ceramics for WLEDs with high CRI∶Ce3+ concentration and sample thickness effects[J].Ceram. Int., 2016, 42(6): 6935-6941.
HU S, QIN X P, ZHOU G H, et al. Luminescence characteristics of the Ce3+-doped garnets: the case of Gd-admixed Y3Al5O12 transparent ceramics[J].Opt. Mater. Express, 2015, 5(12): 2902-2910.
MA Y L, ZHANG L, ZHOU T Y, et al. Dual effect synergistically triggered Ce∶(Y, Tb)3(Al, Mn)5O12 transparent ceramics enabling a high color-rendering index and excellent thermal stability for white LEDs[J].J. Eur. Ceram. Soc., 2021, 41(4): 2834-2846.
JI H P, WANG L, MOLOKEEV M S, et al. Structure evolution and photoluminescence of Lu3(Al, Mg)2(Al, Si)3O12∶Ce3+ phosphors: new yellow-color converters for blue LED-driven solid state lighting[J].J. Mater. Chem. C, 2016, 4(28): 6855-6863.
JI H P, WANG L, MOLOKEEV M S, et al. New garnet structure phosphors, Lu3-xYxMgAl3SiO12∶Ce3+ (x=0-3), developed by solid solution design[J].J. Mater. Chem. C, 2016, 4(12): 2359-2366.
ZHOU Y N, ZHUANG W D, HU Y S, et al. A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12∶Ce3+ phosphor for application in warm white light-emitting diodes[J].RSC Adv., 2017, 7(74): 46713-46720.
MENG Q H, WANG X J, ZHU Q, et al. The effects of Mg2+/Si4+ co-substitution for Al3+ on sintering and photoluminescence of (Gd, Lu)3Al5O12∶Ce garnet ceramics[J].J. Eur. Ceram. Soc., 2020, 40(8): 3262-3269.
TIAN Y N, TANG Y R, YI X Z, et al. The analyses of structure and luminescence in (MgyY3-y)(Al5-ySiy)O12 and Y3(MgxAl5-2x Six)O12 ceramic phosphors[J].J. Alloys Compd., 2020, 813: 152236.
SONG Z, XIA Z G, LIU Q L. Insight into the relationship between crystal structure and crystal-field splitting of Ce3+ doped garnet compounds[J].J. Phys. Chem. C, 2018, 122(6): 3567-3574.
SONG Z, LIU Q L. Effects of neighboring polyhedron competition on the 5d level of Ce3+ in lanthanide garnets[J].J. Phys. Chem. C, 2019, 123(14): 8656-8662.
SONG Z, ZHOU D D, LIU Q L. Tolerance factor and phase stability of the garnet structure[J].Acta Crystallogr. C, 2019, 75: 1353-1358.
MAO A J, ZHAO Z Y, WANG J T, et al. Crystal structure and photo-luminescence of Gd3Ga2(Al3-ySiy)(O12-yNy)∶Ce3+ phosphors for AC-warm LEDS[J].Chem. Eng. J., 2019, 368: 924-932.
HU P, LIU Y F, SUN P, et al. Tunable YAG∶Ce3+ ceramic phosphors for white laser-diode lighting in transmissive/reflective models[J].Mater. Res. Bull., 2021, 140: 111297.
TIAN Y N, TANG Y R, YI X Z, et al. Optimization of Ce3+ concentration and Y4MgSi3O13 phase in Mg2+-Si4+ co-doped Ce∶YAG ceramic phosphors[J].J. Am. Ceram. Soc., 2020, 103(11): 6453-6460.
CHEN J, TANG Y R, YI X Z, et al. Fabrication of (Tb, Gd)3Al5O12∶Ce3+ phosphor ceramics for warm white light-emitting diodes application[J].Opt. Mater. Express, 2019, 9(8): 3333-3341.
LIU Y F, LIU S, SUN P, et al. Transparent ceramics enabling high luminous flux and efficacy for the next-generation high-power LED light[J].ACS Appl. Mater. Interfaces, 2019, 11(24): 21697-21701.
LIU S, SUN P, LIU Y F, et al. Warm white light with a high color-rendering index from a single Gd3Al4GaO12∶Ce3+ transparent ceramic for high-power LEDs and LDs[J].ACS Appl. Mater. Interfaces, 2019, 11(2): 2130-2139.
DING H, LIU Z H, LIU Y F, et al. Gd3Al3Ga2O12∶Ce, Mg2+ transparent ceramic phosphors for high-power white LEDs/LDs[J].Ceram. Int., 2021, 47(6): 7918-7924.
MA Y L, ZHANG L, HUANG J, et al. Broadband emission Gd3Sc2Al3O12∶Ce3+ transparent ceramics with a high color rendering index for high-power white LEDs/LDs[J].Opt. Express, 2021, 29(6): 9474-9493.
TANG Y R, ZHOU S M, YI X Z, et al. The Cr-doping effect on white light emitting properties of Ce∶YAG phosphor ceramics[J].J. Am. Ceram. Soc., 2017, 100(6): 2590-2595.
CAO X, SUN S C, LU B, et al. Spectral photoluminescence properties of YAG∶Ce, R(R: Gd3+, Pr3+, Gd3+ and Pr3+) transparent fluorescent thin film prepared by pulse laser deposition[J].J. Lumin., 2020, 223: 117222.
王兆武, 姬海鹏, 徐坚, 等. 白光LED用Mn4+激活红光荧光粉中锰离子价态表征研究进展[J].发光学报, 2020, 41(10): 1195-1213.
WANG Z W, JI H P, XU J, et al. Advances in valence state analysis of manganese in Mn4+-activated red phosphors for white LEDs[J].Chin. J. Lumin., 2020, 41(10): 1195-1213. (in Chinese)
FENG S W, QIN H M, WU G Q, et al. Spectrum regulation of YAG∶Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application[J].J. Eur. Ceram. Soc., 2017, 37(10): 3403-3409.
AO G, TANG Y R, YI X Z, et al. Red emission generation in Ce3+/Mn2+ co-doping Y3Al5O12 phosphor ceramics for warm white lighting emitting diodes[J].J. Alloys Compd., 2019, 798: 695-699.
LING J R, ZHOU Y F, XU W T, et al. Red-emitting YAG∶Ce, Mn transparent ceramics for warm WLEDs application[J].J. Adv. Ceram., 2020, 9(1): 45-54.
WANG B, LING J R, ZHOU Y F, et al. YAG∶Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs[J].J. Lumin., 2019, 213: 421-426.
MA Y L, ZHANG L, ZHOU T Y, et al. High recorded color rendering index in single Ce, (Pr, Mn)∶YAG transparent ceramics for high-power white LEDs/LDs[J].J. Mater. Chem. C, 2020, 8(13): 4329-4337.
DUAN Y T, ZHAO C Y, LIN H, et al. Photoluminescence properties of Tb3Al5O12∶Ce3+, Mn2+ phosphor ceramics for high color rendering index warm white LEDs[J].Opt. Mater., 2021, 111: 110670.
YANG J Y, HAN T, CAO Y F, et al. Photoluminescent transparent ceramics with an adjustable spectrum for high-color rendering laser lighting[J].J. Mater. Chem. C, 2020, 8(46): 16483-16488.
CAI M S, FANG S Q, HAN T, et al. Selectivity of Mn2+ ion occupancy and energy transfer of Ce3+ → Mn2+ ions in garnet solid solution[J].J. Mater. Chem. C, 2020, 8(41): 14507-14514.
CAO Y F, HAN T, YANG J Y, et al. Tunable-spectrum Mn2+ doped garnet transparent ceramics for high-color rendering laser lighting[J].Int. J. Appl. Ceram. Technol., 2021, 18(3): 716-723.
ZHANG Y L, HU S, LIU Y L, et al. Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12∶Mn4+ ceramic phosphor[J].J. Eur. Ceram. Soc., 2019, 39(2-3): 584-591.
ZHANG Y L, HU S, LIU Y L, et al. Influences of thermal post-treatment on the Mn valence states and luminescence properties of red-emitting Lu3Al5O12∶Mn4+ transparent ceramic phosphors[J].Opt. Mater., 2020, 101: 109705-1-5.
TIAN C, LIN H, ZHANG D W, et al. Mn4+ activated Al2O3 red-emitting ceramic phosphor with excellent thermal conductivity[J].Opt. Express, 2019, 27(22): 32666-32678.
OSBORNE R A, CHEREPY N J, SEELEY Z M, et al. New red phosphor ceramic K2SiF6∶Mn4+[J].Opt. Mater., 2020, 107: 110140-1-7.
LI S X, TANG D M, TIAN Z F, et al. New insights into the microstructure of translucent CaAlSiN3∶Eu2+ phosphor ceramics for solid-state laser lighting[J].J. Mater. Chem. C, 2017, 5(5): 1042-1051.
WU C Y, LIU Z, YU Z G, et al. Phosphor-converted laser-diode-based white lighting module with high luminous flux and color rendering index[J].Opt. Express, 2020, 28(13): 19085-19096.
TANG Y R, ZHOU S M, CHEN C, et al. Composite phase ceramic phosphor of Al2O3-Ce∶YAG for high efficiency light emitting[J].Opt. Express, 2015, 23(14): 17923-17928.
TANG Y R, ZHOU S M, YI X Z, et al. Microstructure optimization of the composite phase ceramic phosphor for white LEDs with excellent luminous efficacy[J].Opt. Lett., 2015, 40(23): 5479-5481.
SONG Y H, KWON S B, JUNG M K, et al. Fabrication design for a high-quality laser diode-based ceramic converter for a laser headlamp application[J].Ceram. Int., 2018, 44(1): 1182-1186.
KWON S B, CHOI S H, YOO J H, et al. Synthesis design of Y3Al5O12∶Ce3+ phosphor for fabrication of ceramic converter in automotive application[J].Opt. Mater., 2018, 80: 265-270.
LI S X, ZHU Q Q, TANG D M, et al. Al2O3-YAG∶Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting[J].J. Mater. Chem. C, 2016, 4(37): 8648-8654.
WANG J C, TANG X Y, ZHENG P, et al. Thermally self-managing YAG∶Ce-Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration[J].J. Mater. Chem. C, 2019, 7(13): 3901-3908.
LIU Z H, LI S X, HUANG Y H, et al. The effect of the porosity on the Al2O3-YAG∶Ce phosphor ceramic: microstructure, luminescent efficiency, and luminous stability in laser-driven lighting[J].J Alloy Compd., 2019, 785: 125-130.
LIU X, QIAN X L, HU Z W, et al. Al2O3-Ce∶GdYAG composite ceramic phosphors for high-power white light-emitting-diode applications[J].J. Eur. Ceram. Soc., 2019, 39(6): 2149-2154.
CHEN J, TANG Y R, YI X Z, et al. Al2O3-Ce∶Tb3Al5O12 composite ceramic phosphors for high efficiency warm white light illumination[J].Opt. Mater., 2019, 97: 109384-1-6.
ZHANG Q, ZHENG R L, DING J Y, et al. High lumen density of Al2O3-LuAG∶Ce composite ceramic for high-brightness display[J].J. Am. Ceram. Soc., 2021, 104(7): 3260-3268.
SONG Y H, JI E K, JEONG B W, et al. Design of laser-driven high-efficiency Al2O3/YAG∶Ce3+ ceramic converter for automotive lighting: fabrication, luminous emittance, and tunable color space[J].Dyes Pigm., 2017, 139: 688-692.
HU S, LIU Y L, ZHANG Y L, et al. 3D printed ceramic phosphor and the photoluminescence property under blue laser excitation[J].J. Eur. Ceram. Soc., 2019, 39(8): 2731-2738.
KOSYANOV D Y, LIU X, VORNOVSKIKH A A, et al. Al2O3-Ce∶YAG and Al2O3-Ce∶(Y, Gd)AG composite ceramics for high brightness lighting: effect of microstructure[J].Mater. Charact., 2021, 172: 110883.
LIU X, QIAN X L, ZHENG P, et al. Preparation and optical properties of MgAl2O4-Ce∶GdYAG composite ceramic phosphors for white LEDs[J].J. Eur. Ceram. Soc., 2019, 39(15): 4965-4971.
TIAN Y N, CHEN J, YI X Z, et al. A new BaAl2O4-YAG∶Ce composite ceramic phosphor for white LEDs and LDs lighting[J].J. Eur. Ceram. Soc., 2021, 41(7): 4343-4348.
GU C, WANG X J, XIA C, et al. A new CaF2-YAG∶Ce composite phosphor ceramic for high-power and high-color-rendering WLEDs[J].J. Mater. Chem. C, 2019, 7(28): 8569-8574.
ZHU Q Q, LI S X, YUAN Q, et al. Transparent YAG∶Ce ceramic with designed low light scattering for high-power blue LED and LD applications[J].J. Eur. Ceram. Soc., 2021, 41(1): 735-740.
ZHU Q Q, MENG Y, ZHANG H, et al. YAGG∶Ce phosphor-in-YAG ceramic: an efficient green color converter suitable for high-power blue laser lighting[J].ACS Appl. Electron. Mater., 2020, 2(8): 2644-2650.
HUANG P, ZHOU B Y, ZHENG Q, et al. Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG∶Ce composite ceramics for high luminous efficiency white light-emitting diodes[J].Adv. Mater., 2020, 32(1): 1905951-1-10.
ZHENG P, LI S X, WEI R, et al. Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light[J].Laser Photonics Rev., 2019, 13(10): 1900147-1-10.
COZZAN C, LHEUREUX G, O'DEA N, et al. Stable, heat-conducting phosphor composites for high-power laser lighting[J].ACS Appl. Mater. Interfaces, 2018, 10(6): 5673-5681.
TIAN Y N, TANG Y R, YI X Z, et al. Study of composite Al2O3-Ce∶Y3Mg1.8Al1.4Si1.8O12 ceramic phosphors[J].Opt. Lett., 2019, 44(19): 4845-4848.
CHEN J, TANG Y R, YI X Z, et al. A novel redshift mechanism of Ce3+ emission in ZrO2-Ce∶YAG composite phosphor ceramics[J].J. Eur. Ceram. Soc., 2020, 40(15): 5852-5858.
SUN B H, ZHANG L, ZHOU T Y, et al. Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce∶YAG transparent ceramics for white LEDs[J].J. Mater. Chem. C, 2019, 7(14): 4057-4065.
HE M T, JIA J N, ZHAO J J, et al. Glass-ceramic phosphors for solid state lighting: a review[J].Ceram. Int., 2021, 47(3): 2963-2980.
ZHANG Q, ZHENG R L, DING J Y, et al. Excellent luminous efficiency and high thermal stability of glass-in-LuAG ceramic for laser-diode-pumped green-emitting phosphor[J].Opt. Lett., 2018, 43(15): 3566-3569.
HU T, NING L X, GAO Y, et al. Glass crystallization making red phosphor for high-power warm white lighting[J].Light: Sci. Appl., 2021, 10(1): 56-1-12.
LIN H, HU T, CHENG Y, et al. Glass ceramic phosphors: towards long-lifetime high-power white light-emitting-diode applications-a review[J].Laser Photonics Rev., 2018, 12(6): 1700344-1-31.
CHUNG W J, NAM Y H. Review-a review on phosphor in glass as a high power LED color converter[J].ECS J. Solid State Sci. Technol., 2019, 9(1): 016010.
ZHANG D, XIAO W G, LIU C, et al. Highly efficient phosphor-glass composites by pressureless sintering[J].Nat. Commun., 2020, 11(1): 2805-1-8.
LEE J S, ARUNKUMAR P, KIM S, et al. Smart design to resolve spectral overlapping of phosphor-in-glass for high-powered remote-type white light-emitting devices[J].Opt. Lett., 2014, 39(4): 762-765.
YU J B, SI S C, LIU Y, et al. High-power laser-driven phosphor-in-glass for excellently high conversion efficiency white light generation for special illumination or display backlighting[J].J. Mater. Chem. C, 2018, 6(30): 8212-8218.
SHIH H K, LIU C N, CHENG W C, et al. High color rendering index of 94 in white LEDs employing novel CaAlSiN3∶Eu2+ and Lu3Al5O12∶Ce3+ co-doped phosphor-in-glass[J].Opt. Express, 2020, 28(19): 28218-28225.
YOU S H, LI S X, ZHENG P, et al. A thermally robust La3Si6N11∶Ce-in-glass film for high-brightness blue-laser-driven solid state lighting[J].Laser Photonics Rev., 2019, 13(2): 1800216-1-10.
KWON S B, KIM B Y, CHOI S H, et al. Fabrication of red-emitting CaAlSiN3∶Eu2+ through phosphor-in-glass approach for application in rear combination lamp[J].Curr. Appl. Phys., 2020, 20(11): 1281-1287.
ZHENG P, LI S X, WANG L, et al. Unique color converter architecture enabling phosphor-in-glass (PiG) films suitable for high-power and high-luminance laser-driven white lighting[J].ACS Appl. Mater. Interfaces, 2018, 10(17): 14930-14940.
PARK Y J, KIM S W, KIM C J, et al. Development of β-SiAlON∶Eu2+ phosphor in glass for high-power LED- and LD-based lighting systems using original BaO-B2O3-ZnO-SiO2(BBZS) composition glass[J].J. Alloys Compd., 2019, 794: 94-100.
YOU S H, LI S X, WANG L, et al. Ternary solid solution phosphors Ca1-x-yLixAl1-x-ySi1+x+yN3-yOy∶Ce3+ with enhanced thermal stability for high-power laser lighting[J].Chem Eng. J., 2021, 404: 126575.
WANG L, WEI R, ZHENG P, et al. Realizing high-brightness and ultra-wide-color-gamut laser-driven backlighting by using laminated phosphor-in-glass (PiG) films[J].J. Mater. Chem. C, 2020, 8(5): 1746-1754.
ZHANG X J, YU J B, WANG J, et al. All-inorganic light convertor based on phosphor-in-glass engineering for next-generation modular high-brightness white LEDs/LDs[J].ACS Photonics, 2017, 4(4): 986-995.
ZHANG X J, SI S C, YU J B, et al. Improving the luminous efficacy and resistance to blue laser irradiation of phosphor-in-glass based solid state laser lighting through employing dual-functional sapphire plate[J].J. Mater. Chem. C, 2019, 7(2): 354-361.
PARK J Y, LEE W C, CHUNG J W, et al. Phosphor-in-glass (PiG) plates for blue laser diode driven white-light emission[J].J. Alloys Compd., 2020, 842: 155922.
XU J, YANG Y, WANG J, et al. Industry-friendly synthesis and high saturation threshold of a LuAG∶Ce/glass composite film realizing high-brightness laser lighting[J].J. Eur. Ceram. Soc., 2020, 40(15): 6031-6036.
吕清洋, 薛秉国, 王婷婷, 等. 白光照明用YAG∶Ce[J].发光学报, 2020, 41(11): 1323-1334.
LYU Q Y, XUE B G, WANG T T, et al. Research progress of YAG∶Ce fluorescent films for white lighting[J].Chin. J. Lumin., 2020, 41(11): 1323-1334. (in Chinese)
WEI R, WANG L, ZHENG P, et al. On the luminance saturation of phosphor-in-glass(PiG) films for blue-laser-driven white lighting: effects of the phosphor content and the film thickness[J].J. Eur. Ceram. Soc., 2019, 39(5): 1909-1917.
岳相铭, 林航, 林世盛, 等. La3Si6N11∶Ce3+荧光玻璃陶瓷及其在高功率固态照明中的应用[J].发光学报, 2020, 41(12): 1529-1537.
YUE X M, LIN H, LIN S S, et al. La3Si6N11∶Ce3+ luminescent glass ceramics applicable to high-power solid-state lighting[J].Chin. J. Lumin., 2020, 41(12): 1529-1537. (in Chinese)
ZHOU B Y, LUO W, LIU S, et al. Enhancing the performance of Ce∶YAG phosphor-in-silica-glass by controlling interface reaction[J].Acta Mater., 2017, 130: 289-296.
HUANG P, ZHAO Y Y, WANG J C, et al. Tunable chromaticity and high color rendering index of WLEDs with CaAlSiN3∶Eu2+ and YAG∶Ce3+ dual phosphor-in-silica-glass[J].J. Am. Ceram. Soc., 2020, 103(9): 4989-4998.
XU J, YANG Y, GUO Z Q, et al. Design of a CaAlSiN3∶Eu/glass composite film: facile synthesis, high saturation-threshold and application in high-power laser lighting[J].J. Eur. Ceram. Soc., 2020, 40(13): 4704-4708.
WANG H, MOU Y, PENG Y, et al. Fabrication of phosphor glass film on aluminum plate by using lead-free tellurite glass for laser-driven white lighting[J].J. Alloys Compd., 2020, 814: 152321.
PENG Y, SUN Q L, LIU J X, et al. Reflective phosphor-in-glass color converter for laser-driven white lighting[J].IEEE Photonics Lett., 2020, 32(16): 983-986.
MOU Y, WANG H, LIANG D D, et al. Efficient and heat-conducting color converter of phosphor glass film printed on sapphire substrate for high-power white LEDs/LDs[J].J. Non-Cryst. Solids, 2019, 515: 98-105.
PENG Y, MOU Y, WANG H, et al. Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting[J].J. Eur. Ceram. Soc., 2018, 38(16): 5525-5532.
YOU S H, LI S X, JIA Y C, et al. Interstitial site engineering for creating unusual red emission in La3Si6N11∶Ce3+[J].Chem. Mater., 2020, 32(8): 3631-3640.
PENG Y, WANG H, LIU J X, et al. Broad-band and stable phosphor-in-glass enabling ultrahigh color rendering for all-inorganic high-power WLEDs[J].ACS Appl. Electron. Mater., 2020, 2(9): 2929-2936.
PENG Y, SUN Q L, LIU J X, et al. Fabrication of stacked color converter for high-power WLEDs with ultra-high color rendering[J].J. Alloys Compd., 2021, 850: 156811.
LIU Z H, HU P, JIANG H J, et al. CaAlSiN3∶Eu2+/Lu3Al5O12∶Ce3+ phosphor-in-glass film with high luminous efficiency and CRI for laser diode lighting[J].J. Mater. Chem. C, 2021, 9(10): 3522-3530.
WU H J, HAO Z D, PAN G H, et al. Phosphor-SiO2 composite films suitable for white laser lighting with excellent color rendering[J].J. Eur. Ceram. Soc., 2020, 40(6): 2439-2444.
HUANG Y F, CHI Y C, CHENG C H, et al. LuAG∶Ce/CASN∶Eu phosphor enhanced high-CRI R/G/B LD lighting fidelity[J].J. Mater. Chem. C, 2019, 7(31): 9556-9563.
YANG H S, ZHANG Y J, ZHANG Y Q, et al. Designed glass frames full color in white light-emitting diodes and laser diodes lighting[J].Chem. Eng. J., 2021, 414: 128754.
MA Y P, LUO X B. Packaging for laser-based white lighting: status and perspectives[J].J. Electron. Packag., 2020, 142(1): 010801-1-14.
ZHANG Y Q, LIU J M, ZHANG Y J, et al. Robust YAG∶Ce single crystal for ultrahigh efficiency laser lighting[J].J. Rare Earth., 2021.
康健, 张乐, 甄方正, 等. 高流明密度激光照明用光转换材料[J].化学进展, 2019, 31(2): 322-336.
KANG J, ZHANG L, ZHEN F Z, et al. Light-conversion materials for high-lumen density laser illumination[J].Prog. Chem., 2019, 31(2): 322-336. (in Chinese)
KRASNOSHCHOKA A, XU J, THORSETH A, et al. High luminous flux laser lighting using single-crystal Ce∶YAG phosphor[C].Proceedings of 2019 IEEE High Power Diode Lasers and Systems Conference(HPD), Coventry, UK, 2019: 31-32.
PARK K W, LIM S G, DERESSA G, et al. High power and temperature luminescence of Y3Al5O12∶Ce3+ bulky and pulverized single crystal phosphors by a floating-zone method[J].J. Lumin., 2015, 168: 334-338.
KANG T W, PARK K W, RYU J H, et al. Strong thermal stability of Lu3Al5O12∶Ce3+ single crystal phosphor for laser lighting[J].J. Lumin., 2017, 191: 35-39.
ARJOCA S, VÍLLORA E G, INOMATA D, et al. Ce∶(Y1-xLux)3Al5O12 single-crystal phosphor plates for high-brightness white LEDs/LDs with high-color rendering (Ra>90) and temperature stability[J].Mater. Res. Express, 2014, 1(2): 025041-1-13.
ARJOCA S, VÍLLORA E G, INOMATA D, et al. Temperature dependence of Ce∶YAG single-crystal phosphors for high-brightness white LEDs/LDs[J].Mater. Res. Express, 2015, 2(5): 055503-1-9.
XU J, THORSETH A, XU C, et al. Investigation of laser-induced luminescence saturation in a single-crystal YAG∶Ce phosphor: towards unique architecture, high saturation threshold, and high-brightness laser-driven white lighting[J].J. Lumin., 2019, 212: 279-285.
ARJOCA S, INOMATA D, MATSUSHITA Y, et al. Growth and optical properties of (Y1-xGdx)3Al5O12∶Ce single crystal phosphors for high-brightness neutral white LEDs and LDs[J].CrystEngComm, 2016, 18(25): 4799-4806.
XU Y R, LI S X, ZHENG P, et al. A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation[J].J. Mater. Chem. C, 2019, 7(37): 11449-11456.
BALCI M H, CHEN F, CUNBUL A B, et al. Comparative study of blue laser diode driven cerium-doped single crystal phosphors in application of high-power lighting and display technologies[J].Opt. Rev., 2018, 25(1): 166-174.
ZHOU Y Y, YU C K, SONG E H, et al. Three birds with one stone: K2SiF6∶Mn4+ single crystal phosphors for high-power and laser-driven lighting[J].Adv. Opt. Mater., 2020, 8(23): 2000976-1-9.
WANG S, LI Y F, FENG L G, et al. Laser patterning of Y3Al5O12∶Ce3+ ceramic phosphor platelets for enhanced forward light extraction and angular color uniformity of white LEDs[J].Opt. Express, 2016, 24(15): 17522-17531.
LIU Y, ZHANG M F, NIE Y, et al. Growth of YAG∶Ce3+-Al2O3 eutectic ceramic by HDS method and its application for white LEDs[J].J. Eur. Ceram. Soc., 2017, 37(15): 4931-4937.
LIU Y, ZHANG M F, WU D, et al. Microstructures and mechanical properties of Al2O3/YAG∶Ce3+ eutectics with different Ce3+ concentrations grown by HDS method[J].J. Alloys Compd., 2020, 816: 152515.
SONG Q S, XU X D, LIU J, et al. Structure and white LED properties of Ce-doped YAG-Al2O3 eutectics grown by the micro-pulling-down method[J].CrystEngComm, 2019, 21(31): 4545-4550.
NAM Y H, HAN K, CHUNG W J, et al. Color conversion properties of various thick-film phosphor-in-glasses depending on structural design for white LEDs[J].J. Am. Ceram. Soc., 2020, 103(8): 4266-4274.
LIN A D, KUNG C L, HSU S P, et al. Effects of coating film parameters on thermal and stress distributions of glass-based phosphor-converted color wheels[J].Coatings, 2018, 8(5): 188-1-15.
LIN Y C, BETTINELLI M, KARLSSON M. Unraveling the mechanisms of thermal quenching of luminescence in Ce3+-doped garnet phosphors[J].Chem. Mater., 2019, 31(11): 3851-3862.
JIA Z W, YUAN C X, LIU Y F, et al. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources[J].Light Sci. Appl., 2020, 9(1): 86-1-9.
HU T, MOLOKEEV M S, XIA Z G, et al. Aliovalent substitution toward reinforced structural rigidity in Ce3+-doped garnet phosphors featuring improved performance[J].J. Mater. Chem. C, 2019, 7(46): 14594-14600.
DING H, LIU Z H, HU P, et al. High efficiency green-emitting LuAG∶Ce ceramic phosphors for laser diode lighting[J].Adv. Opt. Mater., 2021, 9(8): 2002141.
BACHMANN V, RONDA C, MEIJERINK A. Temperature quenching of yellow Ce3+ luminescence in YAG∶Ce[J].Chem. Mater., 2009, 21(10): 2077-2084.
LINDERÄLV C, ÅBERG D, ERHART P. Luminescence quenching via deep defect states: a recombination pathway via oxygen vacancies in Ce-Doped YAG[J].Chem. Mater., 2021, 33(1): 73-80.
KANG J, ZHANG L, LI Y B, et al. Luminescence declining behaviors in YAG∶Ce transparent ceramics for high power laser lighting[J].J. Mater. Chem. C, 2019, 7(45): 14357-14365.
0
浏览量
315
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构