浏览全部资源
扫码关注微信
1.华南农业大学材料与能源学院 生物基材料与能源教育部重点实验室/广东省光学农业工程技术研究中心,广东 广州 510642
2.黄埔海关技术中心,广东 东莞 523073
3.岭南现代农业科学与技术广东省实验室 茂名分中心,广东 茂名 525000
4.华南农业大学 园艺学院,广东 广州 510642
[ "李冬娜(1995-),女,广东湛江人,硕士研究生,2018年于华南农业大学获得学士学位,主要从事碳点调控白光LED发光性能及碳点对植物光合作用影响的研究。E-mail: 2840626122@qq.com" ]
[ "雷炳富(1977-),男,广东茂名人,博士,教授,博士研究生导师,2007年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光-光/电-光转换功能材料及其在设施农业领域的工程化应用、农业环境中重金属离子污染物检测及氧气等的光学传感材料合成与性能的研究。E-mail: tleibf@scau.edu.cn" ]
纸质出版日期:2021-05-01,
收稿日期:2021-02-08,
修回日期:2021-02-23,
扫 描 看 全 文
李冬娜, 何红想, 张浩然, 等. 碳点-纤维素复合红色发光材料制备及性能[J]. 发光学报, 2021,42(5):635-641.
Dong-na LI, Hong-xiang HE, Hao-ran ZHANG, et al. Preparation and Properties of Carbon Dots-cellulose Composite Red Emitting Phosphors[J]. Chinese Journal of Luminescence, 2021,42(5):635-641.
李冬娜, 何红想, 张浩然, 等. 碳点-纤维素复合红色发光材料制备及性能[J]. 发光学报, 2021,42(5):635-641. DOI: 10.37188/CJL.20210055.
Dong-na LI, Hong-xiang HE, Hao-ran ZHANG, et al. Preparation and Properties of Carbon Dots-cellulose Composite Red Emitting Phosphors[J]. Chinese Journal of Luminescence, 2021,42(5):635-641. DOI: 10.37188/CJL.20210055.
白光LED器件作为新一代绿色固态照明光源,已广泛应用于照明、液晶背光等领域,也与智能照明、物联网技术等高新科技产业密切相关。常用的蓝光芯片复合黄光YAG∶Ce
3+
(Y
3
Al
5
O
12
∶Ce
3+
) 荧光粉的白光器件由于缺少红色光谱的成分,导致器件光谱较窄,显色指数较低,色温偏高。因此,红色荧光粉对改善白光LED的光色品质起到了重要作用。本文首先制备了红色碳点(量子效率28%),通过把红色碳点与纤维素复合,制备了红色荧光粉(量子效率为18%)。该红色荧光粉与黄光YAG∶Ce
3+
荧光粉混合,封装得到暖白光。结果表明,相较于只有黄光YAG∶Ce
3+
荧光粉封装的LED,红色荧光粉掺杂之后,在460 nm蓝光芯片的激发下,白光LED的色坐标由(0.30
0.33)变化到(0.33
0.35),色温从7 396 K下降到5 714 K,显色指数从78.2升高到82.9,实现了由色温高、显示指数低的冷白光向色温低、显色指数高的暖白光的调节。
As a new generation of green solid-state lighting source
white light-emitting diode(LED) devices not only have been widely used in lighting
liquid crystal display(LCD) backlighting and other fields
but also are related to intelligent lighting
the Internet of Things technology and other high-tech industries. White light devices consisting of yellow emitting YAG∶Ce
3+
(Y
3
Al
5
O
12
∶Ce
3+
) phosphors and blue chip are commonly used but lacking the components of red spectrum
resulting in the device's narrow spectrum
low color rendering index(CRI) and high correlated color temperature(CCT). Therefore
red phosphors play an important role in improving the color quality of white LED. Herein
red carbon dots with 28% quantum yield(QY) are synthesized and then combined with cellulose to form red phosphors(QY≈18%). Red phosphors are mixed with commercial YAG∶Ce
3+
(Y
3
Al
5
O
12
∶Ce
3+
) to obtain warm white LED. Compared to the LED encapsulated with YAG∶Ce
3+
phosphors
the CIE color coordinate of the LED which is encapsulated with YAG∶Ce
3+
phosphors and red phosphors changes from (0.30
033) to (0.33
0.35)
the CCT declines from 7 396 K to 5 714 K and the CRI raises from 78.2 to 82.9 under the excitation of 460 nm emitting blue chip. It achieves that cold white light-emitting diodes(WLED) with high CCT and low CRI were adjusted to warm WLED with low CCT and high CRI.
红色碳点纤维素暖白光LED照明
red carbon dotscellulosewarm white light-emitting diodeslighting
李嘉祥, 潘拴, 刘军林, 等. 低色温无荧光粉LED光源的可靠性研究[J].发光学报, 2020, 41(3):323-330.
LI J X, PAN S, LIU J L, et al.. Reliability of low color temperature phosphor-free LED light source[J].Chin. J. Lumin., 2020, 41(3):323-330. (in Chinese)
夏振平, 付保川, 程成. 基于冷暖白光LED的线性调光混合照明[J].发光学报, 2018, 39(5):730-736.
XIA Z P, FU B C, CHENG C. Mixed lighting based on linear dimming of cold and warm white LEDs[J].Chin. J. Lumin., 2018, 39(5):730-736. (in Chinese)
JIA H R, WANG Z B, YUAN T, et al.. Electroluminescent warm white light-emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots[J].Adv. Sci., 2019, 6(13):1900397-1-10.
ZHANG X Q, YANG H Y, WAN Z J, et al.. Self-quenching-resistant red emissive carbon dots with high stability for warm white light-emitting diodes with a high color rendering index[J].Adv. Opt. Mater., 2020, 8(15):2000251.
LI D N, LI W, ZHANG H R, et al.. Far-red carbon dots as efficient light-harvesting agents for enhanced photosynthesis[J].ACS Appl. Mater. Interfaces, 2020, 12(18):21009-21019.
LI W, ZHENG Y J, ZHANG H R, et al.. Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants[J].ACS Appl. Mater. Interfaces, 2016, 8(31):19939-19945.
CHEN J L, YAN J, FENG Q M, et al.. Label-free and enzyme-free fluorescence detection of microRNA based on sulfydryl-functionalized carbon dots via target-initiated hemin/G-quadruplex-catalyzed oxidation[J].Biosens. Bioelectron., 2021, 176:112955.
MAHMOOD A, SHI G S, WANG Z, et al.. Carbon quantum dots-TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs:an experimental and DFT studies of adsorption and electronic structure of the interface[J].J. Hazard. Mater., 2021, 401:123402.
YUAN F L, WANG Z B, LI X H, et al.. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes[J].Adv. Mater., 2017, 29(3):1604436-1-6.
YANG H Y, LIU Y L, GUO Z Y, et al.. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission[J].Nat. Commun., 2019, 10(1):1789-1-11.
WANG B Y, LI J, TANG Z Y, et al.. Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes[J].Sci. Bull., 2019, 64(17):1285-1292.
CHEN D Q, GAO H B, CHEN X, et al.. Excitation-independent dual-color carbon dots:surface-state controlling and solid-state lighting[J].ACS Photonics, 2017, 4(9):2352-2358.
LI W, ZHANG H R, ZHENG Y J, et al.. Multifunctional carbon dots for highly luminescent orange-emissive cellulose based composite phosphor construction and plant tissue imaging[J].Nanoscale, 2017, 9(35):12976-12983.
QU S N, ZHOU D, LI D, et al.. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering[J].Adv. Mater., 2016, 28(18):3516-3521.
WU Z L, ZHANG P, GAO M X, et al.. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins[J].J. Mater. Chem. B, 2013, 1(22):2868-2873.
GUO L, GE J C, LIU W M, et al.. Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism[J].Nanoscale, 2016, 8(2):729-734.
SHENG Z H, SHAO L, CHEN J J, et al.. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J].ACS Nano, 2011, 5(6):4350-4358.
QU D, ZHENG M, DU P, et al.. Highly luminescent S,N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts[J].Nanoscale, 2013, 5(24):12272-12277.
LU S Y, SUI L Z, LIU J J, et al.. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence[J].Adv. Mater., 2017, 29(15):1603443-1-6.
0
浏览量
153
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构