浏览全部资源
扫码关注微信
1.天津工业大学 电子与信息工程学院, 天津 300387
2.天津市光电检测与系统重点实验室, 天津 300387
3.天津三安光电有限公司, 天津 300384
[ "王鑫炜(1994-), 男, 江西吉安人, 硕士研究生, 2017年于沈阳工业大学获得学士学位, 主要从事纳米光学器件结构设计的研究E-mail:1830091201@tiangong.edu.cn" ]
[ "刘宏伟(1980-), 男, 辽宁朝阳人, 博士, 副教授, 2010年于中国科学院半导体研究所获得博士学位, 主要从事半导体光电材料及器件的研究。E-mail:hwliu@foxmail.com" ]
纸质出版日期:2021-1,
收稿日期:2020-9-26,
录用日期:2020-10-29
扫 描 看 全 文
王鑫炜, 刘宏伟, 高克, 等. Nano-LED半极性面InGaN/GaN单量子阱结构极化和光谱仿真分析[J]. 发光学报, 2021,42(1):111-117.
Xin-wei WANG, Hong-wei LIU, Ke GAO, et al. Polarization and Spectral Simulation of Nano-LED Semi-polarized InGaN/GaN Single Quantum Well[J]. Chinese Journal of Luminescence, 2021,42(1):111-117.
王鑫炜, 刘宏伟, 高克, 等. Nano-LED半极性面InGaN/GaN单量子阱结构极化和光谱仿真分析[J]. 发光学报, 2021,42(1):111-117. DOI: 10.37188/CJL.20200285.
Xin-wei WANG, Hong-wei LIU, Ke GAO, et al. Polarization and Spectral Simulation of Nano-LED Semi-polarized InGaN/GaN Single Quantum Well[J]. Chinese Journal of Luminescence, 2021,42(1):111-117. DOI: 10.37188/CJL.20200285.
通过有限元分析,利用COMSOL软件模拟计算了Nano-LED半极性面InGaN/GaN单量子阱距离边缘不同位置的应变和压电极化分布,并结合模拟得到的量子阱极化电场,采用Silvaco软件计算得到了Nano-LED InGaN/GaN单量子阱距离边缘不同位置的发光光谱。应变和压电极化分布结果表明,其在距离半极性面量子阱边缘100 nm的范围内变化明显。然而,在半极性面内部,应力释放现象消失,压电极化电场变强,量子限制Stark效应导致InGaN/GaN单量子阱发光强度降低。发光光谱分析表明,60 mA工作电流下,Nano-LEDInGaN/GaN半极性面量子阱边缘位置的光谱峰值最大蓝移达21 nm,其原因在于边缘的应力释放作用。Nano-LED非极性面和半极性面的整体光谱分析表明,在固定Nano-LED高度条件下,Nano-LED的直径越大,半极性面占比越高,器件整体发光光谱的双峰值现象越明显,这将为多波长Nano-LED器件的设计提供借鉴。
In this paper
the strain and the piezoelectric polarization distribution of Nano-LED semipolar InGaN/GaN single quantum well(QW) have been analyzed by COMSOL. The radiation spectrum characteristic of the quantum well has also been calculated by using finite element method(Silvaco). The simulated results indicate that the piezoelectric polarization changed significantly within 100 nm of the QW edge. Through the QW strain distribution
the stress release is more obvious at the edge of InGaN/GaN QW. But in the central of the semi-polarized plane
the strain release vanishes and the piezoelectric polarization increases. Thus
the luminous efficiency of QW decreases because of the quantum confinement Stark effect(QCSE). At the edge of semipolar InGaN/GaN QW
blue shift about 21 nm is observed at driven current of 60 mA. The simulated emission spectra of Nano-LED show that the double peak is obvious when the proportion of semi-polar QW is higher in the Nano-LED device
which can be used as a reference for the multi-spectrum Nano-LED design.
Nano-LED量子阱应变极化效应有限元分析
Nano-LEDquantum well strainpolarizationfinite element
EISENFELD T, KARSENTY A. Design and modeling of light emitting nano-pixel Structure (LENS) for high resolution display (HRD) in a visible range[J].Nanomaterials, 2020, 10(2):214-1-23.
LAZAREV S, DZHIGAEV D, BI Z X, et al.. Structural changes in a single GaN nanowire under applied voltage bias[J].Nano Lett., 2018, 18(9):5446-5452.
WASISTO H S, PRADESJ D, GVLINK J, et al.. Beyond solid-state lighting:miniaturization, hybrid integration, and applications of GaN nano-and micro-LEDs[J].Appl. Phys. Rev., 2019, 6(4):041315.
HERSEE S D, RISHINARAMANGALAM A K, FAIRCHILD M N, et al.. Threading defect elimination in GaN nanowires[J].J. Mater. Res., 2011, 26(17):2293-2298.
RISHINARAMANGALAM A K, UL MASABIH S M, FAIRCHILD M N, et al.. Controlled growth of ordered Ⅲ-nitride core-shell nanostructure arrays for visible optoelectronic devices[J].J. Electron. Mater., 2015, 44(5):1255-1262.
LING S C, LU T C, CHANG S P, et al..Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes[J].Appl. Phys. Lett., 2010, 96(23):231101-1-3.
COULON P M, PUGH J R, ATHANASIOU M, et al.. Optical properties and resonant cavity modes in axial InGaN/GaN nanotube microcavities[J].Opt. Express, 2017, 25(23):28246-28257.
CHANG S J, LAI W C, SU Y K, et al.. InGaN-GaN multi quantum-well blue and green light-emitting diodes[J].IEEE J. Sel. Top. Quant. Electron., 2002, 8(2):278-283.
ZHAO Y J, FU H Q, WANG G T, et al.. Toward ultimate efficiency:progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes[J].Adv. Opt. Photonics, 2018, 10(1):246-308.
ZENG F M, ZHU L H, LIU W, et al.. Study on optical properties of indium-graded semipolar InGaN/GaN quantum well[J].IEEE Photonics J., 2016, 8(3):2200413-1-24.
HSU P S, FARRELL R M, WEAVER J J, et al.. Comparison of polished and dry etched semipolar (1122) Ⅲ-nitride laser facets[J].IEEE Photonics Technol. Lett., 2013, 25(21):2105-2107.
LEE C T, CHENG C J, LEE H Y, et al.. Color conversion of GaN-based micro light-emitting diodes using quantum dots[J].IEEE Photonics Technol. Lett., 2015, 27(21):2296-2299.
GIRGEL I, EDWARDS P R, LE BOULBAR E, et al.. Investigation of InGaN facet-dependent non-polar growth rates and composition for core-shell LEDs[J].J. Nanophotonics, 2016, 10(1):016010.
HAEMMER M, ROYCROFT B, AKHTER M, et al.. Size-dependent bandwidth of semipolar (1122) light-emitting-diodes[J].IEEE Photonics Technol. Lett., 2018, 30(5):439-442.
MCKENDRY J J D, GREEN R P, KELLY A E, et al.. High-speed visible light communications using individual pixels in a micro light-emitting diode array[J].IEEE Photonics Technol. Lett., 2010, 22(18):1346-1348.
BERNARDINI F, FIORENTINI V. First-principles calculation of the piezoelectric tensor d of Ⅲ-Ⅴ nitrides[J].Appl. Phys. Lett., 2002, 80(22):4145-4147.
VURGAFTMAN I, MEYER J R. Band parameters for nitrogen-containing semiconductors[J].J. Appl. Phys., 2003, 94(6):3675-3696.
WU Y R, LIN Y Y, HUANG H H, et al.. Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting[J].J. Appl. Phys., 2009, 105(1):013117-1-7.
YU P, CHIU C H, WU Y R, et al.. Strain relaxation induced microphoto luminescence characteristics of a single InGaN-based nanopillar fabricated by focused ion beam milling[J].J. Appl. Phys., 2008, 93(8):081110-1-3.
DOWNES J, FAUX D A. Calculation of strain distributions in multiple-quantum-well strained-layer structures[J].J. Appl. Phys., 1995, 77(6):2444-2447.
ROUTRAY S R, LENKA T R. Effect of degree of strain relaxation on polarization charges of GaN/InGaN/GaN hexagonal and triangular nanowire solar cells[J].Solid-State Electron., 2019, 159:142-149.
BERNARDINI F, FIORENTINI V. Nonlinear macroscopic polarization in Ⅲ-Ⅴ nitride alloys[J].Phys. Rev. B, 2001, 64(8):085207.
FIORENTINI V, BERNARDINI F, AMBACHER O. Evidence for nonlinear macroscopic polarization in Ⅲ-Ⅴ nitride alloy heterostructures[J].Appl. Phys. Lett., 2002, 80(7):1204-1206.
BERNARDINI F, FIORENTINI V, VANDERBILT D. Spontaneous polarization and piezoelectric constants of Ⅲ-Ⅴ nitrides[J].Phys. Rev. B, 1997, 56(16):R10024-R10027.
MASTRO M A, SIMPKINS B, WANG G T, et al.. Polarization fields in Ⅲ-nitride nanowire devices[J].Nanotechnology, 2010, 21(14):145205-1-5.
0
浏览量
103
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构