浏览全部资源
扫码关注微信
1.南京工程学院 数理学院, 江苏 南京 211167
2.南京航空航天大学 物理学院, 江苏 南京 211106
Published:05 August 2022,
Received:02 May 2022,
Revised:17 May 2022,
移动端阅览
徐海英,刘茂生,姜明明等.单根镓掺杂氧化锌微米线异质结基高亮黄光发光二极管[J].发光学报,2022,43(08):1165-1174.
XU Hai-ying,LIU Mao-sheng,JIANG Ming-ming,et al.High-brightness Yellow Light-emitting Diode in A Single Ga-doped ZnO∶Ga Microwire Heterojunction[J].Chinese Journal of Luminescence,2022,43(08):1165-1174.
徐海英,刘茂生,姜明明等.单根镓掺杂氧化锌微米线异质结基高亮黄光发光二极管[J].发光学报,2022,43(08):1165-1174. DOI: 10.37188/CJL.20220171.
XU Hai-ying,LIU Mao-sheng,JIANG Ming-ming,et al.High-brightness Yellow Light-emitting Diode in A Single Ga-doped ZnO∶Ga Microwire Heterojunction[J].Chinese Journal of Luminescence,2022,43(08):1165-1174. DOI: 10.37188/CJL.20220171.
基于半导体低维微纳结构构筑的可见光发光器件,特别是位于500 ~ 600 nm波段的黄绿光光源,因具有较高的发光效率、长寿命和低功耗等特点,在超高分辨率显示与照明、单分子传感和成像等领域有着广泛的应用价值。由于高性能低维黄绿色发光器件在发光材料制备、器件结构以及发光器件的 “Green/yellow gap”和 “Efficiency droop”等方面受到严重限制,极大地影响了低维微纳结构黄绿光发光器件的开发和应用。本文采用单根镓掺杂氧化锌(ZnO∶Ga)微米线和p型InGaN衬底构筑了异质结基黄光发光二极管,其输出波长位于580 nm附近,半峰宽大约为50 nm。随注入电流的增加,光谱的峰位和半峰宽几乎没有任何变化,也没有观察到InGaN基光源中常见的量子斯塔克效应。器件相应的色坐标始终处于黄光色域范围。更为重要的是,器件的外量子效率在大电流注入下并没有出现较大的下降。结合单根ZnO∶Ga微米线和InGaN的光致发光光谱,以及n‐ZnO∶Ga/p‐InGaN异质结能带结构理论,可以推断该制备器件的发光来自于ZnO∶Ga微米线和InGaN结区界面处载流子的辐射复合,器件的Droop效应得到明显抑制。实验结果表明,n‐ZnO∶Ga微米线/p‐InGaN异质结可用于制备高性能、高亮度的低维黄光发光二极管。
Due to low-dimensional semiconductor micro/nano-structures, visible light-emitting devices, especially for green/yellow light sources locating in the wavelengths of 500-600 nm, have reached a broad audience in ultrahigh resolution display and lighting, single-photon source, single-molecule sensing and imaging in life science and other fields. In developing high-performance green/yellow light-emitting devices, the preparation of light-emitting materials and device structures is highly restricted by the “green/yellow gap” and “efficiency droop”. In the present research, a new generation of yellow light-emitting diode, which is composed of a single Ga-doped ZnO microwire(ZnO∶Ga MW) and p-type InGaN substrate, is demonstrated at a wavelength of 580 nm together with a linewidth of about 50 nm. With increasing the drive current at high injection levels, hardly little variation in the spectral profiles, such as the main emission wavelengths and the linewidth, could be distinctly noticed, as well as the quantum Stark effect that has been normally observed in InGaN-based light sources. The color coordinate is well matched with the yellow of the REC.2020 standard. Interestingly, the external quantum efficiency of the device is relatively stable even at high current injection. By comparing with the photoluminescence properties of a ZnO∶Ga MW and p-InGaN film, the energy band structure of the as-fabricated n-ZnO∶Ga/p-InGaN heterojunction emission device was constructed. It is clearly inferred that the electroluminescence is derived from the generation of electron-hole recombination, which occurring close to the ZnO∶Ga/InGaN heterointerface, instead of the p-InGaN side. The experimental results show that the as-designed n-ZnO∶Ga MW/p-InGaN heterojunction can be used to fabricate high-performance low-dimensional yellow light-emitting diodes.
黄光发光二极管镓掺杂氧化锌微米线铟镓氮外量子效率Droop效应
yellow light-emitting diodeGa-doped ZnO microwireInGaNexternal quantum efficiencyDroop effect
BRAUN C, MEREACRE L, CHEN Z, et al. Closing the yellow gap with Eu- and Tb-doped GaN: one luminescent host resulting in three colours [J]. Sci. Rep., 2022, 12(1): 2503-1-7. doi: 10.1038/s41598-022-06148-0http://dx.doi.org/10.1038/s41598-022-06148-0
KUMARI L, KAR A K. Solvent-dependent tuning of blue-green emission of chemically synthesized ZnO nanomaterials with high colour purity and electroluminescence efficiency [J]. J. Mater. Sci.: Mater. Electron., 2022, 33(12): 9101-9115. doi: 10.1007/s10854-021-07140-6http://dx.doi.org/10.1007/s10854-021-07140-6
DU Y X, ZOU C L, ZHANG C H, et al. Tuneable red, green, and blue single-mode lasing in heterogeneously coupled organic spherical microcavities [J]. Light: Sci. Appl., 2020, 9(1): 151-1-9. doi: 10.1038/s41377-020-00392-7http://dx.doi.org/10.1038/s41377-020-00392-7
WANG J M, WANG M X, XU F J, et al. Sub-nanometer ultrathin epitaxy of AlGaN and its application in efficient doping [J]. Light: Sci. Appl., 2022, 11(1): 71-1-8. doi: 10.1038/s41377-022-00753-4http://dx.doi.org/10.1038/s41377-022-00753-4
江风益, 刘军林, 张建立, 等. 半导体黄光发光二极管新材料新器件新设备 [J]. 物理学报, 2019, 68(16): 168503-1-9. doi: 10.7498/aps.68.20191044http://dx.doi.org/10.7498/aps.68.20191044
JIANG F Y, LIU J L, ZHANG J L, et al. Semiconductor yellow light-emitting diodes [J]. Acta Phys. Sinica, 2019, 68(16): 168503-1-9. (in Chinese). doi: 10.7498/aps.68.20191044http://dx.doi.org/10.7498/aps.68.20191044
赵芳, 张运炎, 宋晶晶, 等. 具有三角形InGaN/GaN多量子阱的高内量子效率的蓝光LED [J]. 发光学报, 2013, 34(1): 66-72. doi: 10.3788/fgxb20133401.0066http://dx.doi.org/10.3788/fgxb20133401.0066
ZHAO F, ZHANG Y Y, SONG J J, et al. High internal quantum efficiency blue light-emitting diodes with triangular shaped ingan/gan multiple quantum wells [J]. Chin. J. Lumin., 2013, 34(1): 66-72. (in English). doi: 10.3788/fgxb20133401.0066http://dx.doi.org/10.3788/fgxb20133401.0066
TAN C S. Lead-free ultra-wide direct bandgap perovskite EACaI3 [J]. IEEE Trans. Nanotechnol., 2022, 21: 66-70. doi: 10.1109/tnano.2022.3146007http://dx.doi.org/10.1109/tnano.2022.3146007
YANG D, WANG L, LV W B, et al. Growth and characterization of phosphor-free white light-emitting diodes based on InGaN blue quantum wells and green-yellow quantum dots [J]. Superlattices Microstruct., 2015, 82: 26-32. doi: 10.1016/j.spmi.2015.02.005http://dx.doi.org/10.1016/j.spmi.2015.02.005
CHEN S W H, HUANG Y M, CHANG Y H, et al. High-bandwidth green semipolar (20-21) InGaN/GaN micro light-emitting diodes for visible light communication [J]. ACS Photonics, 2020, 7(8): 2228-2235. doi: 10.1021/acsphotonics.0c00764http://dx.doi.org/10.1021/acsphotonics.0c00764
LIANG A H, WANG K, GAO Y, et al. Highly efficient halide perovskite light-emitting diodes via molecular passivation [J]. Angew. Chem. Int. Ed., 2021, 60(15): 8337-8343. doi: 10.1002/anie.202100243http://dx.doi.org/10.1002/anie.202100243
BAI J, CAI Y F, FENG P, et al. A direct epitaxial approach to achieving ultrasmall and ultrabright InGaN micro light-emitting diodes(μLEDs) [J]. ACS Photonics, 2020, 7(2): 411-415. doi: 10.1021/acsphotonics.9b01351http://dx.doi.org/10.1021/acsphotonics.9b01351
ZHAO X Y, TANG B, GONG L Y, et al. Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes [J]. Appl. Phys. Lett., 2021, 118(18): 182102. doi: 10.1063/5.0043240http://dx.doi.org/10.1063/5.0043240
BI Z X, LENRICK F, COLVIN J, et al. InGaN platelets: synthesis and applications toward green and red light-emitting diodes [J]. Nano Lett., 2019, 19(5): 2832-2839. doi: 10.1021/acs.nanolett.8b04781http://dx.doi.org/10.1021/acs.nanolett.8b04781
LV Q J, LIU J L, MO C L, et al. Realization of highly efficient InGaN green LEDs with sandwich-like multiple quantum well structure: role of enhanced interwell carrier transport [J]. ACS Photonics, 2019, 6(1): 130-138. doi: 10.1021/acsphotonics.8b01040http://dx.doi.org/10.1021/acsphotonics.8b01040
LIU W, LI Z X, SHI Z L, et al. Nano-buffer controlled electron tunneling to regulate heterojunctional interface emission [J]. Opto‐Electron. Adv., 2021, 4(9): 200064-1-9. doi: 10.29026/oea.2021.200064http://dx.doi.org/10.29026/oea.2021.200064
TSAI Y C, BAYRAM C, LEBURTON J P. Effect of Auger electron-hole asymmetry on the efficiency droop in InGaN quantum well light-emitting diodes [J]. IEEE J. Quantum Electron., 2022, 58(1): 3300109. doi: 10.1109/jqe.2021.3137822http://dx.doi.org/10.1109/jqe.2021.3137822
郭亮, 郭亚楠, 羊建坤, 等. 量子垒高度对深紫外LED调制带宽的影响 [J]. 发光学报, 2022, 43(1): 1-7. doi: 10.37188/CJL.20210331http://dx.doi.org/10.37188/CJL.20210331
GUO L, GUO Y N, YANG J K, et al. Effect of barrier height on modulation characteristics of AlGaN-based deep ultraviolet light-emitting diodes [J]. Chin. J. Lumin., 2022, 43(1): 1-7. (in Chinese). doi: 10.37188/CJL.20210331http://dx.doi.org/10.37188/CJL.20210331
CAO Y, WANG N N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J]. Nature, 2018, 562(7726): 249-253. doi: 10.1038/s41586-018-0576-2http://dx.doi.org/10.1038/s41586-018-0576-2
ZHANG T K, LONG M Z, PAN L X, et al. Green perovskite light-emitting diodes with simultaneous high luminance and quantum efficiency through charge injection engineering [J]. Sci. Bull., 2020, 65(21): 1832-1839. doi: 10.1016/j.scib.2020.06.024http://dx.doi.org/10.1016/j.scib.2020.06.024
刘威, 李竹新, 王俊洁, 等. Er3+掺杂对ZnO/GaN发光二极管电致发光性能的调控 [J]. 发光学报, 2021, 42(6): 863-870. doi: 10.37188/cjl.20210125http://dx.doi.org/10.37188/cjl.20210125
LIU W, LI Z X, WANG J J, et al. Regulation of electroluminescent properties of ZnO/GaN light emitting diodes by Er3+ doping [J]. Chin. J. Lumin., 2021, 42(6): 863-870. (in Chinese). doi: 10.37188/cjl.20210125http://dx.doi.org/10.37188/cjl.20210125
FU Y X, ZHANG D Z, ZHAN H M, et al. Engineering of annealing and surface passivation toward efficient and stable quasi-2D perovskite light-emitting diodes [J]. J. Phys. Chem. Lett., 2021, 12(48): 11645-11651. doi: 10.1021/acs.jpclett.1c03413http://dx.doi.org/10.1021/acs.jpclett.1c03413
LIU Z, QIU W D, PENG X M, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation [J]. Adv. Mater., 2021, 33(43): 2103268-1-9. doi: 10.1002/adma.202103268http://dx.doi.org/10.1002/adma.202103268
LIU B Q, WANG L, GU H S, et al. Highly efficient green light-emitting diodes from all-inorganic perovskite nanocrystals enabled by a new electron transport layer [J]. Adv. Opt. Mater., 2018, 6(11): 1800220-1-7. doi: 10.1002/adom.201800220http://dx.doi.org/10.1002/adom.201800220
LIU Z J, LIN C H, HYUN B R, et al. Micro-light-emitting diodes with quantum dots in display technology [J]. Light: Sci. Appl., 2020, 9: 83-1-23. doi: 10.1038/s41377-020-0268-1http://dx.doi.org/10.1038/s41377-020-0268-1
HUANG Y G, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives [J]. Light: Sci. Appl., 2020, 9: 105-1-16. doi: 10.1038/s41377-020-0341-9http://dx.doi.org/10.1038/s41377-020-0341-9
PARBROOK P J, CORBETT B, HAN J, et al. Micro-light emitting diode: from chips to applications [J]. Laser Photonics Rev., 2021, 15(5): 2000133-1-18.
RA Y H, LEE C R. Understanding the p-type GaN nanocrystals on InGaN nanowire heterostructures [J]. ACS Photonics, 2019, 6(10): 2397-2404. doi: 10.1021/acsphotonics.9b01035http://dx.doi.org/10.1021/acsphotonics.9b01035
WANG L, WANG L, CHEN C J, et al. Green InGaN quantum dots breaking through efficiency and bandwidth bottlenecks of micro-LEDs [J]. Laser Photonics Rev., 2021, 15(5): 2000406-1-9. doi: 10.1002/lpor.202000406http://dx.doi.org/10.1002/lpor.202000406
XU T, NIKIFOROV A Y, FRANCE R, et al. Blue-green-red LEDs based on InGaN quantum dots grown by plasma-assisted molecular beam epitaxy [J]. Phys. Status Solidi (A), 2007, 204(6): 2098-2102. doi: 10.1002/pssa.200674834http://dx.doi.org/10.1002/pssa.200674834
YAN D D, ZHAO S Y, WANG H X, et al. Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr3 quantum dots [J]. Photonics Res., 2020, 8(7): 1086-1092. doi: 10.1364/prj.391703http://dx.doi.org/10.1364/prj.391703
王玮东, 楚春双, 张丹扬,等. 俄歇复合、电子泄漏和空穴注入对深紫外发光二极管效率衰退的影响 [J]. 发光学报, 2021, 42(7):897-903. doi: 10.37188/CJL.20210102http://dx.doi.org/10.37188/CJL.20210102
WANG W D, CHU C S, ZHANG D Y, et al. Impact of Auger recombination, electron leakage and hole injection on efficiency droop for DUV LEDs [J]. Chin. J. Lumin., 2021, 42(7): 897-903. (in English). doi: 10.37188/CJL.20210102http://dx.doi.org/10.37188/CJL.20210102
王润, 贾亚兰, 张月, 等. 基于激子阻挡层的高效率绿光钙钛矿电致发光二极管 [J]. 物理学报, 2020, 69(3): 038501-1-10. doi: 10.7498/aps.69.20191263http://dx.doi.org/10.7498/aps.69.20191263
WANG R, JIA Y L, ZHANG Y, et al. High efficiency green perovskite light-emitting diodes based on exciton blocking layer [J]. Acta Phys. Sinica, 2020, 69(3): 038501-1-10. (in Chinese). doi: 10.7498/aps.69.20191263http://dx.doi.org/10.7498/aps.69.20191263
LU J F, LIU Y, LIU W, et al. Dynamically regulated electroluminescence via strain engineering [J]. Opt. Lett., 2022, 47(6): 1323-1326. doi: 10.1364/ol.447598http://dx.doi.org/10.1364/ol.447598
WU X Y, LI W, CHEN Q R, et al. Mechanism of photocurrent degradation and contactless healing in p-type Mg-doped gallium nitride thin films [J]. Nanomaterials(Basel), 2022, 12(6): 899-1-9. doi: 10.3390/nano12060899http://dx.doi.org/10.3390/nano12060899
ZHAO J G, CHEN K, GONG M G, et al. Epitaxial growth and characteristics of nonpolar a-plane InGaN films with blue-green-red emission and entire in content range [J]. Chin. Phys. Lett., 2022, 39(4): 048101-1-5. doi: 10.1088/0256-307x/39/4/048101http://dx.doi.org/10.1088/0256-307x/39/4/048101
JIANG M M, HE G H, CHEN H Y, et al. Wavelength-tunable electroluminescent light sources from individual Ga-doped ZnO microwires [J]. Small, 2017, 13(19): 1604034-1-10. doi: 10.1002/smll.201604034http://dx.doi.org/10.1002/smll.201604034
LIU Y, JIANG M M, HE G H, et al. Wavelength-tunable ultraviolet electroluminescence from Ga-doped ZnO microwires [J]. ACS Appl. Mater. Interfaces, 2017, 9(46): 40743-40751. doi: 10.1021/acsami.7b14084http://dx.doi.org/10.1021/acsami.7b14084
KUMAR S, JAGIELSKI J, KALLIKOUNIS N, et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates [J]. Nano Lett., 2017, 17(9): 5277-5284. doi: 10.1021/acs.nanolett.7b01544http://dx.doi.org/10.1021/acs.nanolett.7b01544
LIU M S, JIANG M M, LIU Y, et al. Wavelength-tunable green light sources based on ZnO∶Ga nanowire/p-InGaN heterojunctions [J]. ACS Appl. Nano Mater., 2021, 4(10): 11168-11179. doi: 10.1021/acsanm.1c02650http://dx.doi.org/10.1021/acsanm.1c02650
BAI J, CAI Y F, FENG P, et al. Ultrasmall, ultracompact and ultrahigh efficient InGaN micro light emitting diodes(μLEDs) with narrow spectral line width [J]. ACS Nano, 2020, 14(6): 6906-6911. doi: 10.1021/acsnano.0c01180http://dx.doi.org/10.1021/acsnano.0c01180
0
Views
499
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution