
浏览全部资源
扫码关注微信
1.南京信息工程大学 化学与材料学院, 江苏 南京 210044
2.新星职业技术学院 能源化工系, 新疆 哈密 839000
[ "欧昌金(1987-),男,湖南凤凰人,博士,讲师,2017年于南京工业大学获得博士学位,主要从事近红外有机荧光染料合成及其光诊疗性能的研究。E-mail: ocj1987@163.com" ]
[ "陶涛(1988-),男,安徽马鞍山人,博士,教授,2014年于南京大学获得博士学位,主要从事光功能材料的研究。 E-mail: taotao@nuist.edu.cn" ]
收稿:2025-10-11,
修回:2025-10-23,
纸质出版:2026-01-25
移动端阅览
欧昌金,陈韵如,陶涛.近红外二区激发的有机荧光染料:分子设计、性质与应用[J].发光学报,2026,47(01):56-74.
OU Changjin,CHEN Yunru,TAO Tao.NIR-Ⅱ Excited Organic Fluorophores: Molecular Design, Properties and Applications[J].Chinese Journal of Luminescence,2026,47(01):56-74.
欧昌金,陈韵如,陶涛.近红外二区激发的有机荧光染料:分子设计、性质与应用[J].发光学报,2026,47(01):56-74. DOI: 10.37188/CJL.20250225. CSTR: 32170.14.CJL.20250225.
OU Changjin,CHEN Yunru,TAO Tao.NIR-Ⅱ Excited Organic Fluorophores: Molecular Design, Properties and Applications[J].Chinese Journal of Luminescence,2026,47(01):56-74. DOI: 10.37188/CJL.20250225. CSTR: 32170.14.CJL.20250225.
生物荧光成像性能不仅与材料的发光亮度相关,还受到激发波长影响。激发波长愈长,光与组织相互作用越弱,既能减弱光子散射作用,又能有效降低组织吸收和自体荧光,有助于提高信噪比、时空间分辨率和穿透深度。因此,近红外二区(NIR-Ⅱ)激发的荧光成像可实现更深更精准的生物成像与检测,在疾病的临床诊断和治疗方面更具应用前景。本文首先阐述NIR-Ⅱ荧光成像的原理及其优势,随后介绍几类重要NIR-Ⅱ激发荧光染料的设计策略、研究进展以及在医学诊疗中的应用,最后讨论现有NIR-Ⅱ荧光探针的局限以及临床转化面临的挑战,并对未来的发展方向进行了展望。
The quality of biological fluorescence imaging is determined not only by the emissive brightness of the organic dyes but also by the excitation wavelength. The longer the excited wavelength, the weaker the light-tissue interaction, which can reduce photon scattering and effectively lower tissue absorption and autofluorescence. This helps improve signal-to-background ratio, spatial and temporal resolution, and penetration depth. Therefore, fluorescence imaging excited by the second near-infrared window (NIR-Ⅱ) enables deeper and more precise biological imaging and detection, offering greater potential for clinical diagnosis and therapy of diseases. This review first explains the principles and advantages of NIR-Ⅱ fluorescence imaging, then reviews the molecular design strategy and research progress of several important classes of NIR-Ⅱ-excited fluorescent dyes and their applications in medical diagnostics of NIR-Ⅱ fluorescent probes and the challenges in clinical translation, with an outlook on future development directions.
LEI Z H , ZHANG F . Molecular engineering of NIR-Ⅱ fluorophores for improved biomedical detection [J]. Angew. Chem. Int. Ed. , 2021 , 60 ( 30 ): 16294 - 16308 . doi: 10.1002/anie.202007040 http://dx.doi.org/10.1002/anie.202007040
MIAO Q Q , PU K Y . Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics [J]. Adv. Mater. , 2018 , 30 ( 49 ): 1801778 . doi: 10.1002/adma.201801778 http://dx.doi.org/10.1002/adma.201801778
桂一雄 , 陈可瑶 , 罗文帅 , 等 . 近红外二区聚集诱导发光探针在生物医学中的应用 [J]. 发光学报 , 2023 , 44 ( 2 ): 356 - 373 . doi: 10.37188/CJL.20220284 http://dx.doi.org/10.37188/CJL.20220284
GUI Y X , CHEN K Y , LUO W S , et al . Near-infrared-Ⅱ AIE probes for biomedical applications [J]. Chin. J. Lumin. , 2023 , 44 ( 2 ): 356 - 373 . (in Chinese) . doi: 10.37188/CJL.20220284 http://dx.doi.org/10.37188/CJL.20220284
杜平 , 杨小涵 , 肖和 , 等 . 近红外二区发光探针及生物成像 [J]. 发光学报 , 2025 , 46 ( 9 ): 1596 - 1611 . doi: 10.37188/cjl.20250130 http://dx.doi.org/10.37188/cjl.20250130
DU P , YANG X H , XIAO H , et al . NIR-Ⅱ luminescent probes for bioimaging [J]. Chin. J. Lumin. , 2025 , 46 ( 9 ): 1596 - 1611 . (in Chinese) . doi: 10.37188/cjl.20250130 http://dx.doi.org/10.37188/cjl.20250130
DAI H M , SHEN Q , SHAO J J , et al . Small molecular NIR-Ⅱ fluorophores for cancer phototheranostics [J]. Innovation , 2021 , 2 ( 1 ): 100082 . doi: 10.1016/j.xinn.2021.100082 http://dx.doi.org/10.1016/j.xinn.2021.100082
WANG F F , ZHONG Y T , BRUNS O , et al . In vivo NIR-Ⅱ fluorescence imaging for biology and medicine [J]. Nat. Photonics , 2024 , 18 ( 6 ): 535 - 547 . doi: 10.1038/s41566-024-01391-5 http://dx.doi.org/10.1038/s41566-024-01391-5
HONG G S , ANTARIS A L , DAI H J . Near-infrared fluorophores for biomedical imaging [J]. Nat. Biomed. Eng. , 2017 , 1 ( 1 ): 0010 . doi: 10.1038/s41551-016-0010 http://dx.doi.org/10.1038/s41551-016-0010
HU Z H , FANG C , LI B , et al . First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows [J]. Nat. Biomed. Eng. , 2020 , 4 ( 3 ): 259 - 271 . doi: 10.1038/s41551-019-0494-0 http://dx.doi.org/10.1038/s41551-019-0494-0
LI B H , LU L F , ZHAO M Y , et al . An efficient 1 064 nm NIR-Ⅱ excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging [J]. Angew. Chem. Int. Ed. , 2018 , 57 ( 25 ): 7483 - 7487 . doi: 10.1002/anie.201801226 http://dx.doi.org/10.1002/anie.201801226
WANG F F , REN F Q , MA Z R , et al . In vivo non-invasive confocal fluorescence imaging beyond 1 700 nm using supercondu cting nanowire single-photon detectors [J]. Nat. Nanotechnol. , 2022 , 17 ( 6 ): 653 - 660 . doi: 10.1038/s41565-022-01130-3 http://dx.doi.org/10.1038/s41565-022-01130-3
WANDERI K , CUI Z Q . Organic fluorescent nanoprobes with NIR-Ⅱb characteristics for deep learning [J]. Exploration , 2022 , 2 ( 2 ): 20210097 . doi: 10.1002/exp.20210097 http://dx.doi.org/10.1002/exp.20210097
XIN Q , MA H Z , WANG H , et al . Tracking tumor heterogeneity and progression with near-infrared Ⅱ fluorophores [J]. Exploration , 2023 , 3 ( 2 ): 20220011 . doi: 10.1002/exp.20220011 http://dx.doi.org/10.1002/exp.20220011
WANG W Q , HE X W , DU M Z , et al . Organic fluorophores for 1 064 nm excited NIR-Ⅱ fluorescence imaging [J]. Front. Chem. , 2021 , 9 : 769655 . doi: 10.3389/fchem.2021.769655 http://dx.doi.org/10.3389/fchem.2021.769655
YANG Q L , MA H L , LIANG Y Y , et al . Rational design of high brightness NIR-Ⅱ organic dyes with S-D-A-D-S structure [J]. Acc. Mater. Res. , 2021 , 2 ( 3 ): 170 - 183 . doi: 10.1021/accountsmr.0c00114 http://dx.doi.org/10.1021/accountsmr.0c00114
FRIEDMAN H C , COSCO E D , ATALLAH T L , et al . Establishing design principles for emissive organic SWIR chromophores from energy gap laws [J]. Chem , 2021 , 7 ( 12 ): 3359 - 3376 . doi: 10.1016/j.chempr.2021.09.001 http://dx.doi.org/10.1016/j.chempr.2021.09.001
GHOSH P , ALVERTIS A M , CHOWDHURY R , et al . Decoupling excitons from high-frequency vibrations in organic molecules [J]. Nature , 2024 , 629 ( 8011 ): 355 - 362 . doi: 10.1038/s41586-024-07246-x http://dx.doi.org/10.1038/s41586-024-07246-x
倪沪桅 , 钱骏 . 近红外二区荧光成像技术的临床研究进展 [J]. 红外与毫米波学报 , 2023 , 42 ( 6 ): 896 - 906 .
NI H W , QIAN J . Clinical research progress on the fluorescence imaging in the second near-infrared window [J]. J. Infrared Millim. Waves , 2023 , 42 ( 6 ): 896 - 906 . (in Chinese)
BAGHDASARYAN A , WANG F F , REN F Q , et al . Phosphorylcholine-conjugated gold-molecular clusters improve signal for lymph node NIR-Ⅱ fluorescence imaging in preclinical cancer models [J]. Nat. Commun. , 2022 , 13 ( 1 ): 5613 . doi: 10.1038/s41467-022-33341-6 http://dx.doi.org/10.1038/s41467-022-33341-6
CHEN Z H , WANG X H , YANG M Z , et al . An extended NIR-Ⅱ superior imaging window from 1 500 to 1 900 nm for high-resolution in vivo multiplexed imaging based on lanthanide nanocrystals [J]. Angew. Chem. Int. Ed. , 2023 , 62 ( 49 ): e202311883 . doi: 10.1002/anie.202311883 http://dx.doi.org/10.1002/anie.202311883
DIAO S , BLACKBURN J L , HONG G S , et al . Fluorescence imaging in vivo at wavelengths beyond 1 500 nm [J]. Angew. Chem. Int. Ed. , 2015 , 54 ( 49 ): 14758 - 14762 . doi: 10.1002/anie.201507473 http://dx.doi.org/10.1002/anie.201507473
LI C Y , LI F , ZHANG Y J , et al . Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-Ⅱ Ag 2 S quantum dot [J]. ACS Nano , 2015 , 9 ( 12 ): 12255 - 12263 . doi: 10.1021/acsnano.5b05503 http://dx.doi.org/10.1021/acsnano.5b05503
YANG H C , LI R F , ZHANG Y J , et al . Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-Ⅱ window [J]. J. Am. Chem. Soc. , 2021 , 143 ( 6 ): 2601 - 2607 . doi: 10.1021/jacs.0c13071 http://dx.doi.org/10.1021/jacs.0c13071
YI S X , HU Q , CHI Y J , et al . Bright and renal-clearable Au nanoclusters with NIR-Ⅱ excitation and emission for high-resolution fluorescence imaging of kidney dysfunction [J]. ACS Mater. Lett. , 2023 , 5 ( 8 ): 2164 - 2173 . doi: 10.1021/acsmaterialslett.3c00379 http://dx.doi.org/10.1021/acsmaterialslett.3c00379
LIU Y S , LI Y , KOO S , et al . Versatile types of inorganic/organic NIR-Ⅱa/Ⅱb fluorophores: from strategic design toward molecular imaging and theranostics [J]. Chem. Rev. , 2022 , 122 ( 1 ): 209 - 268 . doi: 10.1021/acs.chemrev.1c00553 http://dx.doi.org/10.1021/acs.chemrev.1c00553
ZHANG T , QU X Y , SHAO J J , et al . Organic photosensitizers: from molecular design to phototheranostics [J]. Chem. Soc. Rev. , 2025 , 54 ( 18 ): 8406 - 8433 . doi: 10.1039/d5cs00599j http://dx.doi.org/10.1039/d5cs00599j
WELSHER K , LIU Z , SHERLOCK S P , et al . A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice [J]. Nat. Nanotechnol. , 2009 , 4 ( 11 ): 773 - 780 . doi: 10.1038/nnano.2009.294 http://dx.doi.org/10.1038/nnano.2009.294
HU Z , FENG L L , YANG P P . 2,1,3-Benzothiadiazole derivative small molecule fluorophores for NIR-Ⅱ bioimaging [J]. Adv. Funct. Mater. , 2024 , 34 ( 16 ): 2310818 . doi: 10.1002/adfm.202310818 http://dx.doi.org/10.1002/adfm.202310818
EEDUGURALA N , STEELMAN M E , MAHALINGAVELAR P , et al . Strong acceptor annulation enables control of electronic structure and spin configuration in donor-acceptor conjugated polymers [J]. Chem. Mater. , 2023 , 35 ( 8 ): 3115 - 3123 . doi: 10.1021/acs.chemmater.2c03548 http://dx.doi.org/10.1021/acs.chemmater.2c03548
LI Y Y , CAI Z C , LIU S J , et al . Design of AIEgens for near-infrared Ⅱb imaging through structural modulation at molecular and morphological levels [J]. Nat. Commun. , 2020 , 11 ( 1 ): 1255 . doi: 10.1038/s41467-020-15095-1 http://dx.doi.org/10.1038/s41467-020-15095-1
YANG Q L , MA Z R , WANG H S , et al . Rational design of molecular fluorophores for biological imaging in the NIR-Ⅱ window [J]. Adv. Mater. , 2017 , 29 ( 12 ): 1605497 . doi: 10.1002/adma.201605497 http://dx.doi.org/10.1002/adma.201605497
WANG X Y , YANG X Q , JIANG G Y , et al . Unlocking the NIR-Ⅱ AIEgen for high brightness through intramolecular electrostatic locking [J]. Angew. Chem. Int. Ed. , 2024 , 63 ( 29 ): e202404142 . doi: 10.1002/anie.202404142 http://dx.doi.org/10.1002/anie.202404142
CHEN S Y , PAN Y H , CHEN K , et al . Increasing molecular planarity through donor/side-chain engineering for improved NIR-Ⅱa fluorescence imaging and NIR-Ⅱ photothermal therapy under 1 064 nm [J]. Angew. Chem. Int. Ed. , 2023 , 62 ( 6 ): e202215372 . doi: 10.1002/anie.202215372 http://dx.doi.org/10.1002/anie.202215372
AN L , ZHENG L Y , ZHAO Z Q , et al . Revisiting molecularly conformation-planarized organic dyes for NIR-Ⅱ fluorescence imaging [J]. J. Mater. Chem. B , 2023 , 11 ( 35 ): 8456 - 8463 . doi: 10.1039/d3tb01334k http://dx.doi.org/10.1039/d3tb01334k
OU C J , AN L , ZHAO Z Q , et al . Promoting near-infrared Ⅱ fluorescence efficiency by blocking long-range energy migration [J]. Aggregate , 2023 , 4 ( 3 ): e290 . doi: 10.1002/agt2.290 http://dx.doi.org/10.1002/agt2.290
CHEN P F , QU F , CHEN S Y , et al . Bandgap modulation and lipid intercalation generates ultrabright D-A-D-based zwitterionic small-molecule nanoagent for precise NIR-Ⅱ excitation phototheranostic applications [J]. Adv. Funct. Mater. , 2022 , 32 ( 52 ): 2208463 . doi: 10.1002/adfm.202208463 http://dx.doi.org/10.1002/adfm.202208463
YAN D Y , ZHANG Z J , ZHANG J Y , et al . An all-rounder for NIR-Ⅱ phototheranostics: well-tailored 1 064 nm-excitable molecule for photothermal combating of orthotopic breast cancer [J]. Angew. Chem. Int. Ed. , 2024 , 63 ( 26 ): e202401877 . doi: 10.1002/anie.202401877 http://dx.doi.org/10.1002/anie.202401877
SONG S L , ZHAO Y , KANG M M , et al . An NIR-Ⅱ excitable AIE small molecule with multimodal phototheranostic features for orthotopic breast cancer treatment [J]. Adv. Mater. , 2024 , 36 ( 16 ): 2309748 . doi: 10.1002/adma.202309748 http://dx.doi.org/10.1002/adma.202309748
FANG Y , SHANG J Z , LIU D K , et al . Design, synthesis, and application of a small molecular NIR-Ⅱ fluorophore with maximal emission beyond 1 200 nm [J]. J. Am. Chem. Soc. , 2020 , 142 ( 36 ): 15271 - 15275 . doi: 10.1021/jacs.0c08187 http://dx.doi.org/10.1021/jacs.0c08187
SONG S L , WANG Y J , ZHAO Y , et al . Molecular engineering of AIE luminogens for NIR-Ⅱ/Ⅱb bioimaging and surgical navigation of lymph nodes [J]. Matter , 2022 , 5 ( 9 ): 2847 - 2863 . doi: 10.1016/j.matt.2022.06.030 http://dx.doi.org/10.1016/j.matt.2022.06.030
XIANG C B , DING Q H , JIANG T , et al . Reprogrammed glycolysis-induced augmentation of NIR-Ⅱ excited photodynamic/photothermal therapy [J]. Biomaterials , 2025 , 320 : 123235 . doi: 10.1016/j.biomaterials.2025.123235 http://dx.doi.org/10.1016/j.biomaterials.2025.123235
LIU J W , XIONG Y W , GAO Y C , et al . Molecular oligomerization and donor engineering strategies for achieving superior NIR-Ⅱ fluorescence imaging and thermotherapy under 1 064 nm laser irradiation [J]. Small , 2023 , 19 ( 1 ): 2205640 . doi: 10.1002/smll.202205640 http://dx.doi.org/10.1002/smll.202205640
DAI M C , YANG Y J , SARKAR S , et al . Strategies to convert organic fluorophores into red/near-infrared emitting analogues and their utilization in bioimaging probes [J]. Chem. Soc. Rev. , 2023 , 52 ( 18 ): 6344 - 6358 . doi: 10.1039/d3cs00475a http://dx.doi.org/10.1039/d3cs00475a
RATHNAMALALA C S L , GAYTON J N , DORRIS A L , et al . Donor-acceptor-donor NIR Ⅱ emissive rhodindolizine dye synthesized by C—H bond functionalization [J]. J. Org. Chem. , 2019 , 84 ( 20 ): 13186 - 13193 . doi: 10.1021/acs.joc.9b01860 http://dx.doi.org/10.1021/acs.joc.9b01860
CHATTERJEE S , MEADOR W E , SMITH C , et al . SWIR emissive RosIndolizine dyes with nanoencapsulation in water soluble dendrimers [J]. RSC Adv. , 2021 , 11 ( 45 ): 27832 - 27836 . doi: 10.1039/d1ra05479a http://dx.doi.org/10.1039/d1ra05479a
CHATTERJEE S , SHAIK A K , WIJESINGHE K H , et al . Design and synthesis of rhodindolizine dyes with improved stability and shortwave infrared emission up to 1 250 nm [J]. J. Org. Chem. , 2022 , 87 ( 17 ): 11319 - 11328 . doi: 10.1021/acs.joc.2c00678 http://dx.doi.org/10.1021/acs.joc.2c00678
NDALEH D , SMITH C , LOKU YADDEHIGE M , et al . Shortwave infrared absorptive and emissive pentamethine-bridged indolizine cyanine dyes [J]. J. Org. Chem. , 2021 , 86 ( 21 ): 15376 - 15386 . doi: 10.1021/acs.joc.1c01908 http://dx.doi.org/10.1021/acs.joc.1c01908
LIU D K , HE Z X , ZHAO Y Y , et al . Xanthene-based NIR-Ⅱ dyes for in vivo dynamic imaging of blood circulation [J]. J. Am. Chem. Soc. , 2021 , 143 ( 41 ): 17136 - 17143 . doi: 10.1021/jacs.1c07711 http://dx.doi.org/10.1021/jacs.1c07711
GRIMM J B , TKACHUK A N , XIE L Q , et al . A general method to optimize and functionalize red-shifted rhodamine dyes [J]. Nat. Methods , 2020 , 17 ( 8 ): 815 - 821 . doi: 10.1038/s41592-020-0909-6 http://dx.doi.org/10.1038/s41592-020-0909-6
MEADOR W E , LIN E Y , LIM I , et al . Silicon-RosIndolizine fluorophores with shortwave infrared absorption and emission profiles enable in vivo fluorescence imaging [J]. Nat. Chem. , 2024 , 16 ( 6 ): 970 - 978 . doi: 10.1038/s41557-024-01464-6 http://dx.doi.org/10.1038/s41557-024-01464-6
BHAVANE R , STAROSOLSKI Z , STUPIN I , et al . NIR-Ⅱ fluorescence imaging using indocyanine green nanoparticles [J]. Sci. Rep. , 2018 , 8 ( 1 ): 14455 . doi: 10.1038/s41598-018-32754-y http://dx.doi.org/10.1038/s41598-018-32754-y
SUN C X , LI B H , ZHAO M Y , et al . J -aggregates of cyanine dye for NIR-Ⅱ in vivo dynamic vascular imaging beyond 1 500 nm [J]. J. Am. Chem. Soc. , 2019 , 141 ( 49 ): 19221 - 19225 . doi: 10.1021/jacs.9b10043 http://dx.doi.org/10.1021/jacs.9b10043
LU L F , LI B H , DING S W , et al . NIR-Ⅱ bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing [J]. Nat. Commun. , 2020 , 11 ( 1 ): 4192 . doi: 10.1038/s41467-020-18051-1 http://dx.doi.org/10.1038/s41467-020-18051-1
LI B H , ZHAO M Y , FENG L S , et al . Organic NIR-Ⅱ molecule with long blood half-life for in vivo dynamic vascular imaging [J]. Nat. Commun. , 2020 , 11 ( 1 ): 3102 . doi: 10.1038/s41467-020-16924-z http://dx.doi.org/10.1038/s41467-020-16924-z
YANG Y , SUN C X , WANG S F , et al . Counterion-paired bright heptamethine fluorophores with NIR-Ⅱ excitation and emission enable multiplexed biomedical imaging [J]. Angew. Chem. Int. Ed. , 2022 , 61 ( 24 ): e202117436 . doi: 10.1002/anie.202117436 http://dx.doi.org/10.1002/anie.202117436
BIAN H , MA D D , ZHANG X F , et al . Tailored engineering of novel xanthonium polymethine dyes for synergetic PDT and PTT triggered by 1 064 nm laser toward deep-seated tumors [J]. Small , 2021 , 17 ( 21 ): 2100398 . doi: 10.1002/smll.202100398 http://dx.doi.org/10.1002/smll.202100398
COSCO E D , ARÚS B A , SPEARMAN A L , et al . Bright chromenylium polymethine dyes enable fast, four-color in vivo imaging with shortwave infrared detection [J]. J. Am. Chem. Soc. , 2021 , 143 ( 18 ): 6836 - 6846 . doi: 10.1021/jacs.0c11599 http://dx.doi.org/10.1021/jacs.0c11599
COSCO E D , CARAM J R , BRUNS O T , et al . Flavylium polymethine fluorophores for near- and shortwave infrared imaging [J]. Angew. Chem. Int. Ed. , 2017 , 56 ( 42 ): 13126 - 13129 . doi: 10.1002/anie.201706974 http://dx.doi.org/10.1002/anie.201706974
LEI Z H , SUN C X , PEI P , et al . Stable, wavelength-tunable fluorescent dyes in the NIR-Ⅱ region for in vivo high-contrast bioimaging and multiplexed biosensing [J]. Angew. Chem. Int. Ed. , 2019 , 58 ( 24 ): 8166 - 8171 . doi: 10.1002/anie.201904182 http://dx.doi.org/10.1002/anie.201904182
TAO Z M , HONG G S , SHINJI C , et al . Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1 000 nm [J]. Angew. Chem. Int. Ed. , 2013 , 52 ( 49 ): 13002 - 13006 . doi: 10.1002/anie.201307346 http://dx.doi.org/10.1002/anie.201307346
WANG S F , FAN Y , LI D D , et al . Anti-quenching NIR-Ⅱ molecular fluorophores for in vivo high-contrast imaging and pH sensing [J]. Nat. Commun. , 2019 , 10 ( 1 ): 1058 . doi: 10.1038/s41467-019-09043-x http://dx.doi.org/10.1038/s41467-019-09043-x
DING B B , XIAO Y L , ZHOU H , et al . Polymethine thiopyrylium fluorophores with absorption beyond 1 000 nm for biological imaging in the second near-infrared subwindow [J]. J. Med. Chem. , 2019 , 62 ( 4 ): 2049 - 2059 .
COSCO E D , SPEARMAN A L , RAMAKRISHNAN S , et al . Shortwave infrared polymethine fluorophores matched to e xcitation lasers enable non-invasive, multicolour in vivo imaging in real time [J]. Nat. Chem. , 2020 , 12 ( 12 ): 1123 - 1130 . doi: 10.1038/s41557-020-00554-5 http://dx.doi.org/10.1038/s41557-020-00554-5
YIN C , LI X Z , WANG Y , et al . Organic semiconducting macromolecular dyes for NIR-Ⅱ photoacoustic imaging and photothermal therapy [J]. Adv. Funct. Mater. , 2021 , 31 ( 37 ): 2104650 . doi: 10.1002/adfm.202104650 http://dx.doi.org/10.1002/adfm.202104650
LI D F , ZHANG C , TAI X Y , et al . 1 064 nm activatable semiconducting polymer-based nanoplatform for NIR-Ⅱ fluorescence/NIR-Ⅱ photoacoustic imaging guided photothermal therapy of orthotopic osteosarcoma [J]. Chem. Eng. J. , 2022 , 445 : 136836 . doi: 10.1016/j.cej.2022.136836 http://dx.doi.org/10.1016/j.cej.2022.136836
LI J , XIE L S , SANG W , et al . NIR-Ⅱ-absorbing conjugated polymer-based theranostic agent for NIR-Ⅱ fluorescence imaging-guided photothermal therapy acting synergistically with tumor microenvironment-responsive nitric oxide therapy [J]. ChemPhysMater , 2022 , 1 ( 1 ): 51 - 55 . doi: 10.1016/j.chphma.2021.09.004 http://dx.doi.org/10.1016/j.chphma.2021.09.004
SUN P F , YANG Z L , QU F , et al Conjugated/nonconjugated alternating copolymers for enhanced NIR-Ⅱ fluorescence imaging and NIR-Ⅱ photothermal-ferrotherapy [J]. J. Mater. Chem. B , 2022 , 10 ( 47 ): 9830 - 9837 . doi: 10.1039/d2tb01567f http://dx.doi.org/10.1039/d2tb01567f
HU D N , DU X L , QU F , et al . Conjugated polymer coupled with nonconjugated segments for NIR-Ⅱ fluorescence/NIR-Ⅱ photoacoustic imaging-guided NIR-Ⅱ photothermal therapy [J]. ACS Appl. Polym. Mater. , 2023 , 5 ( 10 ): 8712 - 8719 . doi: 10.1021/acsapm.3c01889 http://dx.doi.org/10.1021/acsapm.3c01889
DAI Y N , LENG D L , GUO Z A , et al . NIR-Ⅱ excitation self-assembly nanomedicine for targeted NIR-Ⅱa fluorescence imaging-guided cuproptosis-promoted synergistic therapy against triple-negative breast cancer [J]. Chem. Eng. J. , 2024 , 479 : 147704 . doi: 10.1016/j.cej.2023.147704 http://dx.doi.org/10.1016/j.cej.2023.147704
YIN C , TAI X Y , LI X Z , et al . Side chain engineering of semiconducting polymers for improved NIR-Ⅱ fluorescence imaging and photothermal therapy [J]. Chem. Eng. J. , 2022 , 428 : 132098 . doi: 10.1016/j.cej.2021.132098 http://dx.doi.org/10.1016/j.cej.2021.132098
SONG X W , LU X M , SUN B , et al . Conjugated polymer nanoparticles with absorption beyond 1 000 nm for NIR-Ⅱ fluorescence imaging system guided NIR-Ⅱ photothermal therapy [J]. ACS Appl. Polym. Mater. , 2020 , 2 ( 10 ): 4171 - 4179 . doi: 10.1021/acsapm.0c00637 http://dx.doi.org/10.1021/acsapm.0c00637
ZHOU H L , LU Z Y , ZHANG Y H , et al . Simultaneous enhancement of the long-wavelength NIR-Ⅱ brightness and photothermal performance of semiconducting polymer nanoparticles [J]. ACS Appl. Mater. Interfaces , 2022 , 14 ( 7 ): 8705 - 8717 . doi: 10.1021/acsami.1c20722 http://dx.doi.org/10.1021/acsami.1c20722
YIN C , ZHANG H , SUN B , et al . Remarkable suppression of vibrational relaxation in organic semiconducting polymers by introducing a weak electron donor for improved NIR-Ⅱ phototheranostics [J]. Adv. Funct. Mater. , 2021 , 31 ( 47 ): 2106575 . doi: 10.1002/adfm.202106575 http://dx.doi.org/10.1002/adfm.202106575
YANG Y Q , FAN X X , LI L , et al . Semiconducting polymer nanoparticles as theranostic system for near-infrared-Ⅱ fluorescence imaging and photothermal therapy under safe laser fluence [J]. ACS Nano , 2020 , 14 ( 2 ): 2509 - 2521 . doi: 10.1021/acsnano.0c00043 http://dx.doi.org/10.1021/acsnano.0c00043
CHEN Y , SUN B , JIANG X Y , et al . Double-acceptor conjugated polymers for NIR-Ⅱ fluorescence imaging and NIR-Ⅱ photothermal therapy applications [J]. J. Mater. Chem. B , 2021 , 9 ( 4 ): 1002 - 1008 . doi: 10.1039/d0tb02499f http://dx.doi.org/10.1039/d0tb02499f
ZHU C G , GAO Q , WANG C X , et al . Quinoxalineimide-based semiconducting polymer nanoparticles as an effective phototheranostic for the second near-infrared fluorescence imaging and photothermal therapy [J]. ACS Appl. Mater. Interfaces , 2023 , 15 ( 24 ): 29396 - 29405 . doi: 10.1021/acsami.3c06853 http://dx.doi.org/10.1021/acsami.3c06853
LI J G , ZHANG Z J , JIANG S S , et al . NIR-Ⅱ excitable semiconducting polymers with AIE characteristics for fluorescence-photoacoustic imaging-guided synergistic phototherapy [J]. Adv. Funct. Mater. , 2024 , 34 ( 32 ): 2401627 . doi: 10.1002/adfm.202401627 http://dx.doi.org/10.1002/adfm.202401627
CAI K , XIE J J , ZHANG D , et al . Concurrent cooperative J-aggregates and anticooperative H-aggregates [J]. J. Am. Chem. Soc. , 2018 , 140 ( 17 ): 5764 - 5773 . doi: 10.1021/jacs.8b01463 http://dx.doi.org/10.1021/jacs.8b01463
WÜRTHNER F , KAISER T E , SAHA-MÖLLER , C R . J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials [J]. Angew. Chem. Int. Ed. , 2011 , 50 ( 15 ): 3376 - 3410 . doi: 10.1002/anie.201002307 http://dx.doi.org/10.1002/anie.201002307
LI Z , LIANG P Z , XU L , et al . In situ orderly self-assembly strategy affording NIR-Ⅱ-J-aggregates for in vivo imaging and surgical navigation [J]. Nat. Commun. , 2023 , 14 ( 1 ): 1843 . doi: 10.1038/s41467-023-37586-7 http://dx.doi.org/10.1038/s41467-023-37586-7
HU X M , ZHU C J , SUN F W , et al . J-aggregation strategy toward potentiated NIR-Ⅱ fluorescence bioimaging of molecular fluorophores [J]. Adv. Mater. , 2024 , 36 ( 1 ): 2304848 . doi: 10.1002/adma.202304848 http://dx.doi.org/10.1002/adma.202304848
FENG L N , LI C B , LIU L X , et al . A facile structural isomerization-induced 3D spatial D-A interlocked network for achieving NIR-Ⅱ phototheranostic agents [J]. Angew. Chem. Int. Ed. , 2022 , 61 ( 50 ): e202212673 . doi: 10.1002/anie.202212673 http://dx.doi.org/10.1002/anie.202212673
ZHU Y , WU F P , ZHENG B B , et al . Electron-withdrawing substituents enhance the type I PDT and NIR-Ⅱ fluorescence of BODIPY J aggregates for bioimaging and cancer therapy [J]. Nano Lett. , 2024 , 24 ( 27 ): 8287 - 8295 . doi: 10.1021/acs.nanolett.4c01339 http://dx.doi.org/10.1021/acs.nanolett.4c01339
OU C J , ZHAO Z Q , AN L , et al . J-aggregate promoting NIR-Ⅱ emission for fluorescence/photoacoustic imaging-guided phototherapy [J]. Adv. Healthc. Mater. , 2024 , 13 ( 23 ): 2400846 . doi: 10.1002/adhm.202400846 http://dx.doi.org/10.1002/adhm.202400846
JIANG Z Y , MA X J , SONG K X , et al . Shortwave infrared absorbing and fluorescent BODIPY J-aggregates for high-contrast in vivo imaging [J]. Chem. Sci. , 2025 , 16 ( 38 ): 17779 - 17792 . doi: 10.1039/d5sc03864b http://dx.doi.org/10.1039/d5sc03864b
WANG Q , LIU J W , YANG L Q , et al . High-efficiency organic semiconducting small molecule for deep-tissue phototheranostics: single 1 064 nm laser triggered NIR-Ⅱb fluorescence imaging guided type-Ⅰ photodynamic/photothermal combination therapy [J]. Adv. Funct. Mater. , 2025 , 35 ( 31 ): 2423165 . doi: 10.1002/adfm.202423165 http://dx.doi.org/10.1002/adfm.202423165
0
浏览量
99
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621