浏览全部资源
扫码关注微信
国科学院福建物质结构研究所 结构化学国家重点实验室, 福建 福州 350002
[ "孙庆福(1983-), 男, 山东曹县人, 中国科学院福建物质结构研究所研究员, 课题组长。2011年获得东京大学应用化学专业博士学位, 留日期间曾获日本学术振兴会青年科学家(JSPS-DC及JSPS-PD)项目及国家优秀自费留学生奖学金资助。2012年赴美国能源部资助下的劳伦斯伯克利国家实验室及加州大学伯克利分校进行博士后研究。2013年以国家高层次人才引进到中国科学院福建物质结构研究所工作。课题组致力于功能配合物及超分子化学等方面的研究, 在大环和笼状超分子配合物的设计合成、发光及磁性调控、主客体性质及仿酶催化等领域取得系列进展, 研究成果发表在Science, Nat.Chem., Nat.Commun., JACS等期刊上, 多次被Science, Nat.Chem., Synfacts, 《中国科学报》等学术媒体报道, 入选\"Science Foundation In China \"、\" 2017年度中国稀土十大科技新闻\"、\"2017国家\"xx计划\"专家创新创业成果年度巨献\"等。(曾)担任《Israel Journal of Chemistry》客座编辑, 《化学进展》、《结构化学》、《发光学报》青年编委。先后入选\"国家杰出青年基金\"、中组部\"海外高层次人才计划\"、福建省\"创新创业人才计划\"等人才项目, 获得中国化学会青年化学奖、中科院优秀导师奖、福建省青年五四奖章标兵、福建省青年科技奖等荣誉。E-mail:qfsun@fjirsm.ac.cn" ]
[ "李小贞(1990-), 女, 河南南阳人, 博士。2018年于中国科学院福建物质结构研究所获得理学博士学位, 毕业后获得博士后创新人才支持计划资助留所工作至今。目前主要从事稀土金属-有机超分子笼的设计合成及主客体化学等方面的研究, 研究成果发表在JACS, Nat.Commun., Chem.Commun.等期刊上。曾获中国科学院优秀博士论文、中国科学院院长优秀奖等奖励。目前主持中国博士后科学基金、国家自然科学基金委青年基金等项目。E-mail:xzli@fjirsm.ac.cn" ]
纸质出版日期:2020-7,
收稿日期:2020-6-10,
录用日期:2020-6-22
扫 描 看 全 文
孙庆福, 李小贞. 当稀土遇见分子笼:新型发光超分子体系[J]. 发光学报, 2020,41(7):770-774.
Qing-fu SUN, Xiao-zhen LI. When Rare Earth Comes Across Metal-organic Cages: A New Luminescent Supramolecular System[J]. Chinese Journal of Luminescence, 2020,41(7):770-774.
孙庆福, 李小贞. 当稀土遇见分子笼:新型发光超分子体系[J]. 发光学报, 2020,41(7):770-774. DOI: 10.37188/fgxb20204107.0770.
Qing-fu SUN, Xiao-zhen LI. When Rare Earth Comes Across Metal-organic Cages: A New Luminescent Supramolecular System[J]. Chinese Journal of Luminescence, 2020,41(7):770-774. DOI: 10.37188/fgxb20204107.0770.
稀土超分子体系由于其独具特色的结构和光学特性,近年来受到了广泛的关注。本文回顾了稀土超分子体系的发展进程,聚焦该领域目前取得的进展,并结合发光材料的发展需求展望了这一新型体系未来面临的挑战和发展契机。
Rare earth supramolecular systems have received increasing attention recently
due to their unique structural features and excellent luminescent properties. We present here a short review on the history of mononuclear rare earth complexes and the current achievements of polynuclear rare earth supramolecular systems
respectively. By looking into the future challenges and opportunities
we look forward to the booming development of this young field.
稀土发光超分子多组分配合物
lanthanide luminescencesupramolecularmulti-componentcoordination complex
BUNZLI J-C G, PIGUET C. Taking advantage of luminescent lanthanide ions[J]. Chem. Soc. Rev., 2005, 34(12):1048-1077.
陈学元, 涂大涛, 郑伟.无机纳米发光材料研究展望:如何走出自己的舒适区?[J].发光学报, 2020, 41(5):498-501.
CHEN X Y, TU D T, ZHENG W. Perspectives for researches in inorgic luminescent nanomaterials:how to move out of current comfort zones?[J]. Chin. J. Lumin., 2020, 41(5):498-501. (in Chinese)
CHAKRABARTY R, MUKHERJEE P S, STANG P J. Supramolecular coordination:self-assembly of finite two- and three-dimensional ensembles[J]. Chem. Rev., 2011, 111(11):6810-6918.
MOORE E G, SAMUEL A P, RAYMOND K N. From antenna to assay:lessons learned in lanthanide luminescence[J]. Accounts Chem. Res., 2009, 42(4):542-552.
BUNZLI J-C G, PIGUET C. Lanthanide-containing molecular and supramolecular polymetallic functional assemblies[J]. Chem. Rev., 2002, 102(6):1897-1928.
ALPHA B, LEHN J-M, MATHIS G. Energy transfer luminescence of europium(Ⅲ) and terbium(Ⅲ) cryptates of macrobicyclic polypyridine ligands[J]. Angew. Chem., Int. Ed., 1987, 26(3):266-267.
MONTGOMERY C P, MURRAY B S, NEW E J, et al. Cell-penetrating metal complex optical probes:targeted and responsive systems based on lanthanide luminescence[J]. Accounts Chem. Res., 2009, 42(7):925-937.
XU J, CORNEILLIE T M, MOORE E G, et al. Octadentate cages of Tb(Ⅲ) 2-hydroxyisophthalamides:a new standard for luminescent lanthanide labels[J]. J. Am. Chem. Soc., 2011, 133(49):19900-19910.
WAHSNER J, GALE E M, RODRIGUEZ-RODRIGUEZ A, et al. Chemistry of MRI contrast agents:current challenges and new frontiers[J]. Chem. Rev., 2019, 119(2):957-1057.
WERNER E J, DATTA A, JOCHER C J, et al. High-relaxivity MRI contrast agents:where coordination chemistry meets medical imaging[J]. Angew. Chem., Int. Ed., 2008, 47(45):8568-8580.
PIGUET C, WILLIAMS A F, BERNARDINELLI G. The first self-assembled dinuclear triple-helical lanthanide complex:synthesis and structure[J]. Angew. Chem., Int. Ed., 1992, 31(12):1622-1624.
PIGUET C, BUNZLI J-C G, BERNARDINELLI G, et al. Lanthanide podates with predetermined structural and photophysical properties:strongly luminescent self-assembled heterodinuclear d-f complexes with a segmental ligand containing heterocyclic imines and carboxamide binding units[J]. J. Am. Chem. Soc., 1996, 118(28):6681-6697.
ABOSHYAN-SORGHO L, NOZARY H, AEBISCHER A, et al. Optimizing millisecond time scale near-infrared emission in polynuclear chrome(Ⅲ)-lanthanide(Ⅲ) complexes[J]. J. Am. Chem. Soc., 2012, 134(30):12675-12684.
ABOSHYAN-SORGHO L, BESNARD C, PATTISON P, et al. Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex[J]. Angew. Chem., Int. Ed., 2011, 50(18):4108-4112.
WANG J, HE C, WU P, et al. An amide-containing metal-organic tetrahedron responding to a spin-trapping reaction in a fluorescent enhancement manner for biological imaging of NO in living cells[J]. J. Am. Chem. Soc., 2011, 133(32):12402-12405.
JIAO Y, WANG J, WU P, et al. Cerium-based M4L4 tetrahedra as molecular flasks for selective reaction prompting and luminescent reaction tracing[J]. Chem.-Eur. J., 2014, 20(8):2224-2231.
SAHOO J, ARUNACHALAM R, SUBRAMANIAN P S, et al. Coordinatively unsaturated lanthanide(Ⅲ) helicates:luminescence sensors for adenosine monophosphate in aqueous media[J]. Angew. Chem., Int. Ed., 2016, 55(33):9625-9629.
LIU C L, ZHANG R L, LIN C S, et al. Intra-ligand charge transfer sensitization on self-assembled euro-pium tetrahedral cage leads to dual selective luminescent sensing toward anion and cation[J]. J. Am. Chem. Soc., 2017, 139(36):12474-12479.
GUO X Q, ZHOU L P, CAI L X, et al. Self-assembled bright luminescent lanthanide-organic polyhedra for ratiometric temperature sensing[J]. Chem.-Eur. J., 2018, 24(27):6936-6940.
WONG H Y, LO W S, YIM K H, et al. Chirality and chiroptics of lanthanide molecular and supramolecular assemblies[J]. Chem, 2019, 5(12):3058-3095.
YAN L L, TAN C H, ZHANG G L, et al. Stereocontrolled self-assembly and self-sorting of luminescent europium tetrahedral cages[J]. J. Am. Chem. Soc., 2015, 137(26):8550-8555.
LI X Z, ZHOU L P, YAN L L, et al. Evolution of luminescent supramolecular lanthanide M2nL3n complexes from helicates and tetrahedra to cubes[J]. J. Am. Chem. Soc., 2017, 139(24):8237-8244.
ZHU Q Y, ZHOU L P, CAI L X, et al. Chiral auxiliary and induced chiroptical sensing with 5d/4f lanthanide-organic macrocycles[J]. Chem. Commun., 2020, 56(19):2861-2864.
LI X Z, ZHOU L P, HU, S J, et al. Metal ion adaptive self-assembly of photoactive lanthanide-based supramolecular hosts[J]. Chem. Commun., 2020, 56(32):4416-4419.
WANG Z, ZHOU L P, ZHAO T H, et al. Hierarchical self-assembly and chiroptical studies of luminescent 4d-4f cages[J]. Inorg. Chem., 2018, 57(13):7982-7992.
ZHOU Y, LI H, ZHU T, et al. A highly luminescent chiral tetrahedral Eu4 L4(L ')4 cage:chirality induction, chirality memory and circularly polarized luminescence[J]. J. Am. Chem. Soc., 2019, 141(50):19634-19643.
0
浏览量
105
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构