浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 特种发光科学与技术全国重点实验室, 吉林 长春 130033
2.中国科学院大学 材料科学与光电工程研究中心, 北京 100049
[ "朱勇学(1994-),男,辽宁铁岭人,博士,助理研究员,2021年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事宽禁带半导体材料外延与光电器件应用等方向的研究。 E-mail: zhuyongxue@ciomp.ac.cn" ]
[ "程祯(1993-),女,山东青岛人,博士,助理研究员,2020年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事紫外光电探测器件与光电功能材料等方向的研究。 E-mail: chengzhen@ciomp.ac.cn" ]
[ "刘可为(1981-),男,辽宁铁岭人,博士,研究员,博士生导师,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事宽禁带半导体光电材料与器件方面的研究。 E-mail: liukw@ciomp.ac.cn" ]
[ "申德振(1959-),男,辽宁铁岭人,博士,研究员,博士生导师,1993年于中国科学院长春物理研究所获得博士学位,主要从事宽禁带Ⅱ-Ⅵ族半导体光电材料、器件与物理方面的研究。 E-mail: shendz@ciomp.ac.cn" ]
收稿日期:2024-11-25,
修回日期:2024-12-13,
纸质出版日期:2025-04-25
移动端阅览
朱勇学,程祯,刘可为等.氧锌镁:从材料特性到紫外探测应用[J].发光学报,2025,46(04):565-581.
ZHU Yongxue,CHENG Zhen,LIU Kewei,et al.Zinc Magnesium Oxide: from Material Properties to UV Detection Applications[J].Chinese Journal of Luminescence,2025,46(04):565-581.
朱勇学,程祯,刘可为等.氧锌镁:从材料特性到紫外探测应用[J].发光学报,2025,46(04):565-581. DOI: 10.37188/CJL.20240307. CSTR: 32170. 14. CJL. 20240307.
ZHU Yongxue,CHENG Zhen,LIU Kewei,et al.Zinc Magnesium Oxide: from Material Properties to UV Detection Applications[J].Chinese Journal of Luminescence,2025,46(04):565-581. DOI: 10.37188/CJL.20240307. CSTR: 32170. 14. CJL. 20240307.
氧锌镁(ZnMgO)是由宽禁带半导体材料氧化锌(ZnO)和氧化镁(MgO)构成的三元合金,作为直接带隙宽禁带半导体,其禁带宽度理论上可在ZnO的3.37 eV和MgO的7.8 eV之间连续可调,并且具有纳米结构丰富、制备温度低、抗辐射能力强、稳定性高等特性,是一种优异的紫外光电探测材料。更为有趣的是,除了上述优点外,ZnMgO还具备压电性、热释电性和铁电性等丰富的物理性质,为其紫外探测器的应用拓展提供了新的可能,相关研究也成为近年来紫外探测领域的研究热点。鉴于此,本文全面综述了ZnMgO丰富的材料特性,重点介绍和讨论了能带工程、铁电/热释电/压电极化、低维结构等在其紫外探测器件的结构设计、性能调控和应用发展等方面的研究进展。
Zinc magnesium oxide (ZnMgO), a ternary alloy constituted of wide bandgap semiconductor materials zinc oxide (ZnO) and magnesium oxide (MgO). As a direct bandgap semiconductor, theoretically, its bandgap width can be continuously tuned between 3.37 eV of ZnO and 7.8 eV of MgO. It possesses numerous properties such as abundant nanostructures, low preparation temperature, strong radiation resistance, and high stability, making it an excellent detection material for ultraviolet photodetectors. Moreover, apart from the aforementioned advantages, ZnMgO also exhibits rich physical properties such as piezoelectricity, pyroelectricity, and ferroelectricity, which provide new possibilities for the expansion of the applications in ultraviolet detectors. Consequently, related research has become a hotspot in the field of ultraviolet detection in recent years. In view of this, this thesis comprehensively reviews the material properties of ZnMgO, focusing on the research progress in bandgap engineering, ferroelectric/pyroelectric/piezoelectric polarization, and low-dimensional structures in the structural design, performance regulation, and application development of its ultraviolet detection devices.
ZHANG X N , CHENG R Q , DENG Y H , et al . Tailoring performance of perovskite-based tunneling photodetector for portable monitoring of ultraviolet radiation risk [J]. Nano Energy , 2024 , 122 : 109282 . doi: 10.1016/j.nanoen.2024.109282 http://dx.doi.org/10.1016/j.nanoen.2024.109282
YANG J L , LIU K W , ZHU Y X , et al . High-performance solar-blind UV bipolar junction phototransistor based on a vertical Pt/Ga 2 O 3 /p-Si Schottky emitter structure [J]. J. Alloys Compd. , 2024 , 1008 : 176668 . doi: 10.1016/j.jallcom.2024.176668 http://dx.doi.org/10.1016/j.jallcom.2024.176668
HAN S , YUE D W , CAO P J , et al . Ultra-high response solar-blind UV detector based on mix-phase MgZnO thin film on fused quartz substrate [J]. Opt. Mater. , 2024 , 147 : 114612 . doi: 10.1016/j.optmat.2023.114612 http://dx.doi.org/10.1016/j.optmat.2023.114612
ZHANG Q Y , LI N , ZHANG T , et al . Enhanced gain and detectivity of unipolar barrier solar blind avalanche photodetector via lattice and band engineering [J]. Nat. Commun. , 2023 , 14 ( 1 ): 418 . doi: 10.1038/s41467-023-36117-8 http://dx.doi.org/10.1038/s41467-023-36117-8
CAO F , LIU Y , LIU M , et al . Wide bandgap semiconductors for ultraviolet photodetectors: approaches, applications, and prospects [J]. Research , 2024 , 7 : 0385 . doi: 10.34133/research.0385 http://dx.doi.org/10.34133/research.0385
YANG J L , LIU K W , CHEN X , et al . Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors [J]. Prog. Quantum Electron. , 2022 , 83 : 100397 . doi: 10.1016/j.pquantelec.2022.100397 http://dx.doi.org/10.1016/j.pquantelec.2022.100397
ZHANG C , LIU K W , AI Q , et al . High-performance fully transparent Ga 2 O 3 solar-blind UV photodetector with the embedded indium-tin-oxide electrodes [J]. Mater. Today Phys. , 2023 , 33 : 101034 . doi: 10.1016/j.mtphys.2023.101034 http://dx.doi.org/10.1016/j.mtphys.2023.101034
申德振 , 梅增霞 , 梁会力 , 等 . 氧化锌基材料、异质结构及光电器件 [J]. 发光学报 , 2014 , 35 ( 1 ): 1 - 60 . doi: 10.3788/fgxb20143501.0001b http://dx.doi.org/10.3788/fgxb20143501.0001b
SHEN D Z , MEI Z X , LIANG H L , et al . ZnO-based material, heterojunction and photoelctronic device [J]. Chin. J. Lumin. , 2014 , 35 ( 1 ): 1 - 60 . (in Chinese) . doi: 10.3788/fgxb20143501.0001b http://dx.doi.org/10.3788/fgxb20143501.0001b
YANG Z Y , ALBROW-OWEN T , CAI W W , et al . Miniaturization of optical spectrometers [J]. Science , 2021 , 371 ( 6528 ): 6528 . doi: 10.1126/science.abe0722 http://dx.doi.org/10.1126/science.abe0722
JOHNSTON M B . Colour-selective photodiodes [J]. Nat. Photonics , 2015 , 9 ( 10 ): 634 - 636 . doi: 10.1038/nphoton.2015.180 http://dx.doi.org/10.1038/nphoton.2015.180
YANG Z Y , ALBROW-OWEN T , CUI H X , et al . Single-nanowire spectrometers [J]. Science , 2019 , 365 ( 6457 ): 1017 - 1020 . doi: 10.1126/science.aax8814 http://dx.doi.org/10.1126/science.aax8814
BAO J , BAWENDI M G . A colloidal quantum dot spectrometer [J]. Nature , 2015 , 523 ( 7558 ): 67 - 70 . doi: 10.1038/nature14576 http://dx.doi.org/10.1038/nature14576
DU J Y , XIE D G , ZHANG Q H , et al . A robust neuromorphic vision sensor with optical control of ferroelectric switching [J]. Nano Energy , 2021 , 89 : 106439 . doi: 10.1016/j.nanoen.2021.106439 http://dx.doi.org/10.1016/j.nanoen.2021.106439
CHUNG W , KIM D , KIM J , et al . Optically and electrically modulated artificial synapses based on MoS 2 /PZT ferroelectric field-effect transistor for neuromorphic computing system [J]. J. Mater. Sci. Technol. , 2025 , 218 : 25 - 34 . doi: 10.1016/j.jmst.2024.06.058 http://dx.doi.org/10.1016/j.jmst.2024.06.058
PATIL S A , JAGDALE P B , SINGH A , et al . 2D zinc oxide-synthesis, methodologies, reaction mechanism, and applications [J]. Small , 2023 , 19 ( 14 ): 2206063 . doi: 10.1002/smll.202206063 http://dx.doi.org/10.1002/smll.202206063
ZOU W Y , SASTRY M , GOODING J J , et al . Recent advances and a roadmap to wearable UV sensor technologies [J]. Adv. Mater. Technol. , 2020 , 5 ( 4 ): 1901036 . doi: 10.1002/admt.201901036 http://dx.doi.org/10.1002/admt.201901036
ZHU Y X , LIU K W , HUANG X Q , et al . Self-powered p-GaN/i-ZnGa 2 O 4 /n-ITO heterojunction broadband ultraviolet photodetector with high working temperature [J]. IEEE Electron Device Lett. , 2023 , 44 ( 5 ): 737 - 740 . doi: 10.1109/led.2023.3262755 http://dx.doi.org/10.1109/led.2023.3262755
XIN L J , LIU K W , ZHU Y X , et al . MBE-grown MgO thin film vacuum ultraviolet photodetector with record high responsivity of 3.2 A/W operating at 400 ℃ [J]. IEEE Electron Device Lett. , 2024 , 45 ( 5 ): 913 - 916 . doi: 10.1109/led.2024.3381114 http://dx.doi.org/10.1109/led.2024.3381114
SANAM M , SHAH Z H , ULLAH F , et al . Structural, electronic, and optical study of Zn∶MgO compositions by computational and experimental approach [J]. Ceram. Int. , 2024 , 50 ( 16 ): 28078 - 28086 . doi: 10.1016/j.ceramint.2024.05.105 http://dx.doi.org/10.1016/j.ceramint.2024.05.105
LIN Y P , PISKUNOV S , TRINKLER L , et al . Electronic and optical properties of rocksalt Mg 1- x Zn x O and wurtzite Zn 1- x Mg x O with varied concentrations of magnesium and zinc [J]. Materials , 2022 , 15 ( 21 ): 7689 . doi: 10.3390/ma15217689 http://dx.doi.org/10.3390/ma15217689
SHIAU J S , BRAHMA S , HUANG J L , et al . Fabrication of flexible UV-B photodetectors made of Mg x Zn 1- x O films on PI substrate for enhanced sensitivity by piezophototronic effect [J]. Appl. Mater. Today , 2020 , 20 : 100705 . doi: 10.1016/j.apmt.2020.100705 http://dx.doi.org/10.1016/j.apmt.2020.100705
CHENG Z , LIU K W , QIAO B S , et al . High-performance photodetector based on semi-encompassed CH 3 NH 3 PbCl 3 -ZnO microwire heterojunction with alterable spectral response [J]. Phys. Scr. , 2023 , 98 ( 3 ): 035520 . doi: 10.1088/1402-4896/acbbf9 http://dx.doi.org/10.1088/1402-4896/acbbf9
CHEN M X , ZHAO B , HU G F , et al . Piezo‐phototronic effect modulated deep UV photodetector based on ZnO‐Ga 2 O 3 heterojuction microwire [J]. Adv. Funct. Mater. , 2018 , 28 ( 14 ): 1706379 . doi: 10.1002/adfm.201706379 http://dx.doi.org/10.1002/adfm.201706379
YANG X , DONG L , SHAN C X , et al . Piezophototronic‐effect‐enhanced electrically pumped lasing [J]. Adv. Mater. , 2017 , 29 ( 5 ): 1602832 . doi: 10.1002/adma.201602832 http://dx.doi.org/10.1002/adma.201602832
PANWAR V , NANDI S , MAJUMDER M , et al . Self-powered ZnO-based pyro-phototronic photodetectors: impact of heterointerfaces and parametric studies [J]. J. Mater. Chem. C , 2022 , 10 ( 35 ): 12487 - 12510 . doi: 10.1039/d2tc02030k http://dx.doi.org/10.1039/d2tc02030k
WANG Z N , YU R M , WANG X F , et al . Ultrafast response p‐Si/n‐ZnO heterojunction ultraviolet detector based on pyro‐phototronic effect [J]. Adv. Mater. , 2016 , 28 ( 32 ): 6880 - 6886 . doi: 10.1002/adma.201600884 http://dx.doi.org/10.1002/adma.201600884
JACQUES L , RYU G , GOODLING D , et al . Wake up and retention in zinc magnesium oxide ferroelectric films [J]. J. Appl. Phys. , 2023 , 133 ( 22 ): 224102 . doi: 10.1063/5.0153750 http://dx.doi.org/10.1063/5.0153750
GOEL S , KUMAR B . A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures [J]. J. Alloys Compd. , 2020 , 816 : 152491 . doi: 10.1016/j.jallcom.2019.152491 http://dx.doi.org/10.1016/j.jallcom.2019.152491
ZHOU C Q , AI Q , CHEN X , et al . Ultraviolet photodetectors based on wide bandgap oxide semiconductor films [J]. Chin. Phys. B , 2019 , 28 ( 4 ): 048503 . doi: 10.1088/1674-1056/28/4/048503 http://dx.doi.org/10.1088/1674-1056/28/4/048503
YANG J L , LIU K W , SHEN D Z . Recent progress of ZnMgO ultraviolet photodetector [J]. Chin. Phys. B , 2017 , 26 ( 4 ): 047308 . doi: 10.1088/1674-1056/26/4/047308 http://dx.doi.org/10.1088/1674-1056/26/4/047308
LIU K W , SAKURAI M , AONO M . ZnO-based ultraviolet photodetectors [J]. Sensors , 2010 , 10 ( 9 ): 8604 - 8634 . doi: 10.3390/s100908604 http://dx.doi.org/10.3390/s100908604
HOU Y N , MEI Z X , DU X L . Semiconductor ultraviolet photodetectors based on ZnO and Mg x Zn 1- x O [J]. J. Phys. D Appl. Phys. , 2014 , 47 ( 28 ): 283001 . doi: 10.1088/0022-3727/47/28/283001 http://dx.doi.org/10.1088/0022-3727/47/28/283001
DEKA BORUAH B . Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors [J]. Nanoscale Adv. , 2019 , 1 ( 6 ): 2059 - 2085 . doi: 10.1039/c9na00130a http://dx.doi.org/10.1039/c9na00130a
ZHANG T , LI M K , CHEN J , et al . Multi-component ZnO alloys: bandgap engineering, hetero-structures, and optoelectronic devices [J]. Mater. Sci. Eng. R Rep. , 2022 , 147 : 100661 . doi: 10.1016/j.mser.2021.100661 http://dx.doi.org/10.1016/j.mser.2021.100661
HU J N , CHEN J , MA T , et al . Research advances in ZnO nanomaterials-based UV photode tectors: a review [J]. Nanotechnology , 2023 , 34 ( 23 ): 232002 . doi: 10.1088/1361-6528/acbf59 http://dx.doi.org/10.1088/1361-6528/acbf59
陈星 , 周畅 , 刘可为 , 等 . 基于宽禁带半导体氧化物微纳材料的紫外探测器研究进展 [J]. 中国光学(中英文) , 2022 , 15 ( 5 ): 912 - 928 . doi: 10.37188/co.2022-0132 http://dx.doi.org/10.37188/co.2022-0132
CHEN X , ZHOU C , LIU K W , et al . Review of ultraviolet photodetectors based on micro/nano-structured wide bandgap semiconductor oxide [J]. Chin. Opt. , 2022 , 15 ( 5 ): 912 - 928 . (in Chinese) . doi: 10.37188/co.2022-0132 http://dx.doi.org/10.37188/co.2022-0132
WANG Z L . Piezopotential gated nanowire devices: piezotronics and piezo-phototronics [J]. Nano Today , 2010 , 5 ( 6 ): 540 - 552 . doi: 10.1016/j.nantod.2010.10.008 http://dx.doi.org/10.1016/j.nantod.2010.10.008
WANG Y T , XIE W L , PENG W B , et al . Fundamentals and applications of ZnO-nanowire-based piezotronics and piezo-phototronics [J]. Micromachines , 2022 , 14 ( 1 ): 47 . doi: 10.3390/mi14010047 http://dx.doi.org/10.3390/mi14010047
GHOSH R . Recent progress in piezotronic sensors based on one-dimensional zinc oxide nanostructures and its regularly ordered arrays: from design to application [J]. Nano Energy , 2023 , 113 : 108606 . doi: 10.1016/j.nanoen.2023.108606 http://dx.doi.org/10.1016/j.nanoen.2023.108606
YANG J , IEVLEV A V , MOROZOVSKA A N , et al . Coexistence and interplay of two ferroelectric mechanisms in Zn 1- x Mg x O [J]. Adv. Mater. , 2024 , 36 ( 39 ): 2404925 .
MARTÍNEZ-AGUILAR E , HMŎK H L , HERRERA O R , et al . Ferroelectricity in Zn 1- x Mg x O solid solutions [J]. Curr. Appl. Phys. , 2023 , 56 : 9 - 15 . doi: 10.1016/j.cap.2023.09.008 http://dx.doi.org/10.1016/j.cap.2023.09.008
HUANG J W , HU Y H , LIU S . Origin of ferroelectricity in magnesium-doped zinc oxide [J]. Phys. Rev. B , 2022 , 106 ( 14 ): 144106 . doi: 10.1103/physrevb.106.144106 http://dx.doi.org/10.1103/physrevb.106.144106
FERRI K , BACHU S , ZHU W L , et al . Ferroelectrics everywhere: ferroelectricity in magnesium substituted zinc oxide thin films [J]. J. Appl. Phys. , 2021 , 130 ( 4 ): 044101 . doi: 10.1063/5.0053755 http://dx.doi.org/10.1063/5.0053755
TAKAGI T , TANAKA H , FUJITA S , et al . Molecular beam epitaxy of high magnesium content single-phase wurzite Mg x Zn 1- x O alloys ( x ≃ 0.5) and their application to solar-blind region photodetectors [J]. Jpn. J. Appl. Phys. , 2003 , 42 ( 4B ): L401 - L403 . doi: 10.1143/jjap.42.l401 http://dx.doi.org/10.1143/jjap.42.l401
MASIAK P , GORCZYCA I , TEISSEYRE H . Theoretical study of the electronic and optical properties of ZnO/MgO rock salt superlattices [J]. Micro Nanostruct. , 2023 , 182 : 207647 . doi: 10.1016/j.micrna.2023.207647 http://dx.doi.org/10.1016/j.micrna.2023.207647
DJELAL A , CHAIBI K , TARI N , et al . Ab - initio DFT-FP-LAPW/TB-mBJ/LDA-GGA investigation of structural and electronic properties of Mg x Zn 1- x O alloys in würtzite, rocksalt and zinc-blende phases [J]. Superlattices Microstruct. , 2017 , 109 : 81 - 98 . doi: 10.1016/j.spmi.2017.04.041 http://dx.doi.org/10.1016/j.spmi.2017.04.041
BENKRIMA Y , SOUIGAT A , KORICHI Z , et al . Structural and optical properties of wurtzite phase MgO: first principles calculation [J]. Dig. J. Nanomater. Biostruct. , 2022 , 17 ( 4 ): 1211 - 1222 . doi: 10.15251/djnb.2022.174.1211 http://dx.doi.org/10.15251/djnb.2022.174.1211
TAKAHASHI R , DAZAI T , TSUKAHARA Y , et al . Mg substitution effect on the electron affinity of ZnO films [J]. J. Appl. Phys. , 2022 , 131 ( 17 ): 175302 . doi: 10.1063/5.0087044 http://dx.doi.org/10.1063/5.0087044
GORCZYCA I , WIERZBOWSKA M , JAROSZ D , et al . Rocksalt ZnMgO alloys for ultraviolet applications: origin of band-gap fluctuations and direct-indirect transitions [J]. Phys. Rev. B , 2020 , 101 ( 24 ): 245202 . doi: 10.1103/physrevb.101.245202 http://dx.doi.org/10.1103/physrevb.101.245202
OGAWA K , KOSAKA W , KUSAKA H , et al . Realization of cathodoluminescence in the 180 nm spectral range by suppressing thermal stress in mist chemical vapor deposition of rocksalt-structured MgZnO films [J]. Jpn. J. Appl. Phys. , 2024 , 63 ( 2 ): 02SP30 . doi: 10.35848/1347-4065/ad0c2a http://dx.doi.org/10.35848/1347-4065/ad0c2a
ONUMA T , KUDO K , ONO M , et al . Steady-state and dynamic characteristics of deep UV luminescence in rock salt-structured Mg x Zn 1- x O [J]. J. Appl. Phys. , 2023 , 134 ( 2 ): 025102 . doi: 10.1063/5.0155269 http://dx.doi.org/10.1063/5.0155269
ONUMA T , ONO M , ISHII K , et al . Impact of local arrangement of Mg and Zn atoms in rocksalt-structured Mg x Zn 1- x O alloys on bandgap and deep UV cathodoluminescence peak energies [J]. Appl. Phys. Lett. , 2018 , 113 ( 6 ): 061903 . doi: 10.1063/1.5031174 http://dx.doi.org/10.1063/1.5031174
ZHU Y X , LIU K W , WANG X , et al . Performance improvement of a ZnMgO ultraviolet detector by chemical treatment with hydrogen peroxide [J]. J. Mater. Chem. C , 2017 , 5 ( 30 ): 7598 - 7603 . doi: 10.1039/c7tc02425h http://dx.doi.org/10.1039/c7tc02425h
CHEN X , LIU K W , WANG X , et al . Performance enhancement of a ZnMgO film UV photodetector by HF solution treatment [J]. J. Mater. Chem. C , 2017 , 5 ( 40 ): 10645 - 10651 . doi: 10.1039/c7tc03352d http://dx.doi.org/10.1039/c7tc03352d
CHEN X , WANG L Y , LIU K W , et al . Responsivity improvement of a packaged ZnMgO solar blind ultraviolet photodetector via a sealing treatment of silica gel [J]. J. Mater. Chem. C , 2020 , 8 ( 3 ): 1089 - 1094 . doi: 10.1039/c9tc05427h http://dx.doi.org/10.1039/c9tc05427h
FAN M M , LIU K W , CHEN X , et al . Realization of cubic ZnMgO photodetectors for UVB applications [J]. J. Mater. Chem. C , 2015 , 3 ( 2 ): 313 - 317 . doi: 10.1039/c4tc02188f http://dx.doi.org/10.1039/c4tc02188f
XIE X H , ZHANG Z Z , LI B H , et al . Ultra-low threshold avalanche gain from solar-blind photodetector based on graded-band-gap-cubic-MgZnO [J]. Opt. Express , 2015 , 23 ( 25 ): 32329 - 32336 . doi: 10.1364/oe.23.032329 http://dx.doi.org/10.1364/oe.23.032329
ZHENG W , LIN R C , ZHU Y M , et al . Vacuum ultraviolet photodetection in two-dimensional oxides [J]. ACS Appl. Mater. Interfaces , 2018 , 10 ( 24 ): 20696 - 20702 . doi: 10.1021/acsami.8b04866 http://dx.doi.org/10.1021/acsami.8b04866
ZHOU X , JIANG D Y , ZHAO M , et al . Heteroepitaxial growth of high Mg-content single-phased W-MgZnO on ZnO matrixes in various nucleation states for solar-blind and visible-blind dual-band UV photodetectors [J]. Mater. Res. Bull. , 2021 , 142 : 111438 . doi: 10.1016/j.materresbull.2021.111438 http://dx.doi.org/10.1016/j.materresbull.2021.111438
ENDO H , TAKAHASHI K , KASHIWABA Y . Fabrication and characterization of a Pt/Mg x Zn 1- x O/ZnO Schottky barrier photodiode utilizing a field plate structure [J]. Jpn. J. Appl. Phys. , 2018 , 57 ( 4S ): 04 FG08. doi: 10.7567/jjap.57.04fg08 http://dx.doi.org/10.7567/jjap.57.04fg08
WANG L K , JU Z G , ZHANG J Y , et al . Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices [J]. Appl. Phys. Lett. , 2009 , 95 ( 13 ): 131113 . doi: 10.1063/1.3238571 http://dx.doi.org/10.1063/1.3238571
WANG X , LIU K W , CHEN X , et al . Highly wavelength-selective enhancement of responsivity in Ag nanoparticle-modified ZnO UV photodetector [J]. ACS Appl. Mater. Interfaces , 2017 , 9 ( 6 ): 5574 - 5579 . doi: 10.1021/acsami.6b14430 http://dx.doi.org/10.1021/acsami.6b14430
ZHU Y X , LIU K W , AI Q , et al . A high performance self-powered ultraviolet photodetector based on a p-GaN/n-ZnMgO heterojunction [J]. J. Mater. Chem. C , 2020 , 8 ( 8 ): 2719 - 2724 . doi: 10.1039/c9tc06416h http://dx.doi.org/10.1039/c9tc06416h
ZHAO Z J , XU C Y , MA Y , et al . Ultraviolet narrowband photomultiplication type organic photodetectors with Fabry-Pérot resonator architecture [J]. Adv. Funct. Mater. , 2022 , 32 ( 29 ): 2203606 . doi: 10.1002/adfm.202203606 http://dx.doi.org/10.1002/adfm.202203606
LEE H Y , HSU Y T , LEE C T . ZnO-based resonant cavity enhanced metal-semiconductor-metal ultraviolet photodetectors [J]. Solid-State Electron. , 2013 , 79 : 223 - 226 . doi: 10.1016/j.sse.2012.07.008 http://dx.doi.org/10.1016/j.sse.2012.07.008
GAO Y F , WANG Z L . Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics [J]. Nano Lett. , 2007 , 7 ( 8 ): 2499 - 2505 . doi: 10.1021/nl071310j http://dx.doi.org/10.1021/nl071310j
YANG Y , GUO W X , PRADEL K C , et al . Pyroelectric nanogenerators for harvesting thermoelectric energy [J]. Nano Lett. , 2012 , 12 ( 6 ): 2833 - 2838 . doi: 10.1021/nl3003039 http://dx.doi.org/10.1021/nl3003039
ZHANG Y L , ZHU Q X , TIAN B B , et al . New-generation ferroelectric AlScN materials [J]. Nano-Micro Lett. , 2024 , 16 ( 1 ): 227 . doi: 10.1007/s40820-024-01441-1 http://dx.doi.org/10.1007/s40820-024-01441-1
AN C H , QI H , WANG L F , et al . Piezotronic and piezo-phototronic effects of atomically-thin ZnO nanosheets [J]. Nano Energy , 2021 , 82 : 105653 . doi: 10.1016/j.nanoen.2020.105653 http://dx.doi.org/10.1016/j.nanoen.2020.105653
WANG Y , ZHU L P , FENG Y J , et al . Comprehensive pyro‐phototronic effect enhanced ultraviolet detector with ZnO/Ag Schottky junction [J]. Adv. Funct. Mater. , 2019 , 29 ( 5 ): 1807111 . doi: 10.1002/adfm.201807111 http://dx.doi.org/10.1002/adfm.201807111
YOU H M , WAN P , CHENG D P , et al . Performance-boosted AgNWs@ZnO∶Sb microwire/n-Si heterojunction self-powered ultraviolet photodetector by coupling pyro-phototronic and plasmonic effects [J]. IEEE Sens. J. , 2024 , 24 ( 7 ): 9855 - 9867 . doi: 10.1109/jsen.2024.3361461 http://dx.doi.org/10.1109/jsen.2024.3361461
WANG H B , MA J G , HAN Y R , et al . Enhanced performance of self-powered Ga 2 O 3 /ZnO∶V heterojunction solar-blind ultraviolet photodetectors by coupling ferroelectricity and piezoelectricity [J]. ACS Appl. Mater. Interfaces , 2024 , 16 ( 27 ): 35293 - 35302 . doi: 10.1021/acsami.4c04747 http://dx.doi.org/10.1021/acsami.4c04747
THEERTHAGIRI J , SALLA S , SENTHIL R A , et al . A review on ZnO nanostructured materials: energy, environmental and biological applications [J]. Nanotechnology , 2019 , 30 ( 39 ): 392001 . doi: 10.1088/1361-6528/ab268a http://dx.doi.org/10.1088/1361-6528/ab268a
ZOU Y N , ZHANG Y , HU Y M , et al . Ultraviolet detectors based on wide bandgap semiconductor nanowire: a review [J]. Sensors , 2018 , 18 ( 7 ): 2072 . doi: 10.3390/s18072072 http://dx.doi.org/10.3390/s18072072
MADHAVANUNNI REKHA S , VADAKKE NEELAMANA H , BHAT S V . Recent advances in solution-processed zinc oxide thin films for ultraviolet photodetectors [J]. ACS Appl. Electron. Mater. , 2023 , 5 ( 8 ): 4051 - 4066 . doi: 10.1021/acsaelm.3c00563 http://dx.doi.org/10.1021/acsaelm.3c00563
PENG M F , WEN Z , SUN X H . Recent progress of flexible photodetectors based on low‐dimensional Ⅱ-Ⅵ semiconductors and their application in wearable electronics [J]. Adv. Funct. Mater. , 2022 , 33 ( 11 ): 2211548 . doi: 10.1002/adfm.202211548 http://dx.doi.org/10.1002/adfm.202211548
TRAN V T , WEI Y F , YANG H Y , et al . All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device [J]. Nanotechnology , 2017 , 28 ( 9 ): 095204 . doi: 10.1088/1361-6528/aa57ae http://dx.doi.org/10.1088/1361-6528/aa57ae
AN J N , LE T S D , LIM C H J , et al . Single‐step selective laser writing of flexible photodetectors for wearable optoelectronics [J]. Adv. Sci. , 2018 , 5 ( 8 ): 1800496 . doi: 10.1002/advs.201800496 http://dx.doi.org/10.1002/advs.201800496
LEE D , SEOL M L , MOTILAL G , et al . All 3D-printed flexible ZnO UV photodetector on an ultraflat substrate [J]. ACS Sens. , 2020 , 5 ( 4 ): 1028 - 1032 . doi: 10.1021/acssensors.9b02544 http://dx.doi.org/10.1021/acssensors.9b02544
DONG Y H , ZOU Y S , SONG J Z , et al . An all-inkjet-printed flexible UV photodetector [J]. Nanoscale , 2017 , 9 ( 25 ): 8580 - 8585 . doi: 10.1039/c7nr00250e http://dx.doi.org/10.1039/c7nr00250e
KWON D K , PORTE Y , KO K Y , et al . High-performance flexible ZnO nanorod UV/gas dual sensors using Ag nanoparticle templates [J]. ACS Appl. Mater. Interfaces , 2018 , 10 ( 37 ): 31505 - 31514 . doi: 10.1021/acsami.8b13046 http://dx.doi.org/10.1021/acsami.8b13046
YANG D W , MA H L , LI J Q , et al . Sunscreen-inspired ZnO/PEG composites for flexible ultraviolet photodetectors with a giant on-off ratio [J]. ACS Photonics , 2023 , 10 ( 5 ): 1320 - 1327 . doi: 10.1021/acsphotonics.2c01959 http://dx.doi.org/10.1021/acsphotonics.2c01959
LI H X , HUANG J , ZHENG Q H , et al . Flexible ultraviolet photodetector based ZnO film sputtered on paper [J]. Vacuum , 2020 , 172 : 109089 . doi: 10.1016/j.vacuum.2019.109089 http://dx.doi.org/10.1016/j.vacuum.2019.109089
MANEKKATHODI A , LU M Y , WANG C W , et al . Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics [J]. Adv. Mater. , 2010 , 22 ( 36 ): 4059 - 4063 . doi: 10.1002/adma.201001289 http://dx.doi.org/10.1002/adma.201001289
ZHENG Z Y , LIU K W , CHEN X , et al . High-performance flexible UV photodetector based on self-supporting ZnO nano-networks fabricated by substrate-free chemical vapor deposition [J]. Nanotechnology , 2021 , 32 ( 47 ): 475201 . doi: 10.1088/1361-6528/ac1bda http://dx.doi.org/10.1088/1361-6528/ac1bda
SHA S L , TANG K , LIU M S , et al . High-performance, low-power, and flexible ultraviolet photodetector based on crossed ZnO microwires p-n homojunction [J]. Photonics Res. , 2024 , 12 ( 4 ): 648 - 662 . doi: 10.1364/prj.505839 http://dx.doi.org/10.1364/prj.505839
WU J D , LIN L Y . A flexible nanocrystal photovoltaic ultraviolet photodetector on a plant membrane [J]. Adv. Opt. Mater. , 2015 , 3 ( 11 ): 1530 - 1536 . doi: 10.1002/adom.201500198 http://dx.doi.org/10.1002/adom.201500198
ZHANG X L , LI J , YANG W J , et al . High-performance flexible ultraviolet photodetectors based on AZO/ZnO/PVK/PEDOT∶PSS heterostructures integrated on human hair [J]. ACS Appl. Mater. Interfaces , 2019 , 11 ( 27 ): 24459 - 24467 . doi: 10.1021/acsami.9b07423 http://dx.doi.org/10.1021/acsami.9b07423
DONG Y H , ZOU Y S , SONG J Z , et al . Self-powered fiber-shaped wearable omnidirectional photodetectors [J]. Nano Energy , 2016 , 30 : 173 - 179 . doi: 10.1016/j.nanoen.2016.10.009 http://dx.doi.org/10.1016/j.nanoen.2016.10.009
LIU Y Z , LIU K W , YANG J L , et al . A self-powered flexible UV photodetector based on an individual ZnO-amorphous Ga 2 O 3 core-shell heterojunction microwire [J]. J. Mater. Chem. C , 2024 , 12 ( 26 ): 9623 - 9629 . doi: 10.1039/d4tc01327a http://dx.doi.org/10.1039/d4tc01327a
XU S M , WAN X , MANSHAII F , et al . Advances in piezoelectric nanogenerators for self-powered cardiac care [J]. Nano Trends , 2024 , 7 : 100042 . doi: 10.1016/j.nwnano.2024.100042 http://dx.doi.org/10.1016/j.nwnano.2024.100042
ZHANG Y , PENG M F , LIU Y N , et al . Flexible self-powered real-time ultraviolet photodetector by coupling triboelectric and photoelectric effects [J]. ACS Appl. Mater. Interfaces , 2020 , 12 ( 17 ): 19384 - 19392 . doi: 10.1021/acsami.9b22572 http://dx.doi.org/10.1021/acsami.9b22572
WANG Y C , GUO X T , SHI Y G , et al . Self-powered wearable ultraviolet index detector using a flexible thermoelectric generator [J]. J. Micromech. Microeng. , 2019 , 29 ( 4 ): 045002 . doi: 10.1088/1361-6439/ab0239 http://dx.doi.org/10.1088/1361-6439/ab0239
SAHA A , KUMAR G , PRADHAN S , et al . Visible-blind ZnMgO colloidal quantum dot downconverters expand silicon CMOS sensors spectral coverage into ultraviolet and enable UV-band discrimination [J]. Adv. Mater. , 2022 , 34 ( 10 ): 2109498 . doi: 10.1002/adma.202109498 http://dx.doi.org/10.1002/adma.202109498
GUO Y H , YIN C S , ZHOU J , et al . Decoupling acoustoelectric and thermal effects of ultraviolet responses for acoustic wave sensing mechanisms [J]. IEEE Sens. J. , 2023 , 23 ( 11 ): 11444 - 11452 . doi: 10.1109/jsen.2023.3265696 http://dx.doi.org/10.1109/jsen.2023.3265696
ZHANG Y , CAI Y , ZHOU J , et al . Surface acoustic wave-based ultraviolet photodetectors: a review [J]. Sci. Bull. , 2020 , 65 ( 7 ): 587 - 600 . doi: 10.1016/j.scib.2019.12.001 http://dx.doi.org/10.1016/j.scib.2019.12.001
BHARATI M , RANA L , JINDAL K , et al . Lamb wave resonator for UV photodetection and impact of induced piezopotential on Schottky barrier height toward enhanced sensitivity [J]. IEEE Sens. J. , 2023 , 23 ( 10 ): 10568 - 10576 . doi: 10.1109/jsen.2023.3265854 http://dx.doi.org/10.1109/jsen.2023.3265854
0
浏览量
66
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构