浏览全部资源
扫码关注微信
1.南京工业大学 数理科学学院, 江苏 南京 211816
2.南京工业大学 2011学院, 江苏 南京 211816
3.东南大学 电子科学与工程学院, 江苏 南京 210096
[ "张晴怡(2001-),女,河北邯郸人,硕士研究生,2023年于合肥师范学院获得学士学位,主要从事钙钛矿发光材料与器件的研究。 E-mail: 202361121022@njtech.edu.cn" ]
[ "陈峰(1987-),男,安徽亳州人,博士,副教授,硕士生导师,2019 年于东南大学获得博士学位,主要从事微/纳半导体材料制备与光电功能器件设计。 Email: fengchenzql@njtech.edu.cn" ]
[ "徐春祥(1965-),男,江苏兴化人,博士,教授,博士生导师,1997年于中国科学院长春物理研究所获得博士学位,主要从事纳米光电功能材料与器件的研究。 E-mail: xcxseu@seu.edu.cn" ]
收稿日期:2024-10-20,
修回日期:2024-11-05,
纸质出版日期:2025-04-25
移动端阅览
张晴怡,杨羽欣,刘凯等.ZnO基器件中的负光电导特性研究[J].发光学报,2025,46(04):582-596.
ZHANG Qingyi,YANG Yuxin,LIU Kai,et al.Negative Photoconductivity in ZnO Devices[J].Chinese Journal of Luminescence,2025,46(04):582-596.
张晴怡,杨羽欣,刘凯等.ZnO基器件中的负光电导特性研究[J].发光学报,2025,46(04):582-596. DOI: 10.37188/CJL.20240270. CSTR: 32170. 14. CJL. 20240270.
ZHANG Qingyi,YANG Yuxin,LIU Kai,et al.Negative Photoconductivity in ZnO Devices[J].Chinese Journal of Luminescence,2025,46(04):582-596. DOI: 10.37188/CJL.20240270. CSTR: 32170. 14. CJL. 20240270.
作为第三代半导体电子器件中最著名的n型金属氧化物之一,氧化锌因具有高检出率、高光学增益、高灵敏度等特点常用于高性能紫外光电探测器的构筑。氧化锌的光电导行为强烈依赖于其表界面性质和导带附近的缺陷态对光生载流子的捕获和去捕获。研究发现,由于载流子的损耗和缺陷捕获,在ZnO器件中还能够观察到持续光电导现象(Persistent photoconductivity)甚至负光电导(Negative photoconductivity,NPC)效应。本文从ZnO器件的正光电导机理出发,详细介绍了ZnO基器件中在不同制备条件和环境温度、不同驱动方式、介质复合和异质结构中观察到的负光电导现象及其产生负光电导效应的微观物理机制。氧化锌负光电导特性的研究可为构建高效逻辑电路、发光二极管、太阳能电池和超高分辨率成像传感器提供新思路。
As one of the best-known n-type metal oxides in third-generation semiconductor electronic devices, in particular, with its high detection rate, high optical gain, and high sensitivity, ZnO is commonly used in the construction of high-performance ultraviolet photodetectors. The photoconductivity behavior of zinc oxide strongly depends on its surface interface properties, the trapping and detrapping of photogenerated carriers by defect states near the conduction band. Researches have found that persistent photoconductivity and even negative photoconductivity(NPC) effects can be observed in ZnO devices due to carrier loss and defect trapping. This paper starts from the positive photoconductivity mechanism of ZnO devices, and provides a detailed introduction to the negative photoconductivity phenomena observed in ZnO-based devices under different preparation conditions and ambient temperatures, different driving methods, dielectric recombination, and heterostructures, as well as the microscopic physical mechanisms responsible for the negative photoconductivity effect. Underlying the NPC effect of ZnO can provide a feasible approach for constructing highly efficiency logic circuits, light-emitting diodes, solar cells, and ultra-high resolution imaging sensors.
CUI B Y , XING Y H , HAN J , et al . Negative photoconductivity in low-dimensional materials [J]. Chin. Phys. B , 2021 , 30 ( 2 ): 028507 . doi: 10.1088/1674-1056/abcf41 http://dx.doi.org/10.1088/1674-1056/abcf41
TAILOR N K , ARANDA C A , SALIBA M , et al . Negative photoconductivity: bizarre physics in semiconductors [J]. ACS Mater. Lett. , 2022 , 4 ( 11 ): 2298 - 2320 . doi: 10.1021/acsmaterialslett.2c00675 http://dx.doi.org/10.1021/acsmaterialslett.2c00675
刘凯 , 张晴怡 , 廖延安 , 等 . 光电器件中的负光电导效应及应用 [J]. 发光学报 , 2024 , 45 ( 2 ): 317 - 333 . doi: 10.37188/cjl.20230285 http://dx.doi.org/10.37188/cjl.20230285
LIU K , ZHANG Q Y , LIAO Y A , et al . Negative photoconductivity and its applications in optoelectronic devices [J]. Chin. J. Lumin. , 2024 , 45 ( 2 ): 317 - 333 . (in Chinese) . doi: 10.37188/cjl.20230285 http://dx.doi.org/10.37188/cjl.20230285
LI W , ZHOU S Y , XIA X L , et al . Ultrahigh and tunable negative photoresponse in organic-gated carbon nanotube film field-effect transistors [J]. Adv. Funct. Mater. , 2023 , 33 ( 48 ): 2305724 . doi: 10.1002/adfm.202305724 http://dx.doi.org/10.1002/adfm.202305724
JAWA H , VARGHESE A , GHOSH S , et al . Wavelength-controlled photocurrent pola rity switching in BP-MoS 2 heterostructure [J]. Adv. Funct. Mater. , 2022 , 32 ( 25 ): 2112696 . doi: 10.1002/adfm.202112696 http://dx.doi.org/10.1002/adfm.202112696
XU C X , DAI J , ZHU G P , et al . Whispering-gallery mode lasing in ZnO microcavities [J]. Laser Photon. Rev. , 2014 , 8 ( 4 ): 469 - 494 . doi: 10.1002/lpor.201300127 http://dx.doi.org/10.1002/lpor.201300127
ZHANG T , LI M K , CHEN J , et al . Multi-component ZnO alloys: bandgap engineering, hetero-structures, and optoelectronic devices [J]. Mater. Sci. Eng.: R: Rep., 2022 , 147 : 100661 . doi: 10.1016/j.mser.2021.100661 http://dx.doi.org/10.1016/j.mser.2021.100661
HU J N , CHEN J , MA T , et al . Research advances in ZnO nanomaterials-based UV photode tectors: a review [J]. Nanotechnology , 2023 , 34 ( 23 ): 232002 . doi: 10.1088/1361-6528/acbf59 http://dx.doi.org/10.1088/1361-6528/acbf59
ZHAO H Y , WANG S , ZHU H Y , et al . Modulating nanograin size and oxygen vacancy of porous ZnO nanosheets by highly concentrated Fe-doping effect for durable visible photocatalytic disinfection [J]. Rare Metals , 2024 , 43 ( 11 ): 5905 - 5920 . doi: 10.1007/s12598-024-02807-5 http://dx.doi.org/10.1007/s12598-024-02807-5
HU Q M , DONG Z , ZHANG G X , et al . Ultra-thin ALD CoO x -ZnO heterogenous films as highly sensitive and environmentally friendly H 2 S sensor [J]. Rare Metals , 2023 , 42 ( 9 ): 3054 - 3063 . doi: 10.1007/s12598-023-02310-3 http://dx.doi.org/10.1007/s12598-023-02310-3
KOŁODZIEJCZAK -RADZIMSKA A , JESIONOWSKI T . Zinc oxide-from synthesis to application: a review [J]. Materials , 2014 , 7 ( 4 ): 2833 - 2881 . doi: 10.3390/ma7042833 http://dx.doi.org/10.3390/ma7042833
GARTNER M , STROESCU H , MITREA D , et al . Various Applications of ZnO thin films obtained by chemical routes in the last decade [J]. Molecules , 2023 , 28 ( 12 ): 4674 . doi: 10.3390/molecules28124674 http://dx.doi.org/10.3390/molecules28124674
BORUAH B D . Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors [J]. Nanoscale Adv. , 2019 , 1 ( 6 ): 2059 - 2085 . doi: 10.1039/c9na00130a http://dx.doi.org/10.1039/c9na00130a
LIU J Z , LEE S , AHN Y H , et al . Tailoring the visible photoluminescence of mass-produced ZnO nanowires [J]. J. Phys. D: Appl. Phys. , 2009 , 42 ( 9 ): 095401 . doi: 10.1088/0022-3727/42/9/095401 http://dx.doi.org/10.1088/0022-3727/42/9/095401
EHRENTRAUT D , SATO H , KAGAMITANI Y , et al . Solvothermal growth of ZnO [J]. Prog. Cryst. Growth Charact. Mater. , 2006 , 52 ( 4 ): 280 - 335 . doi: 10.1016/j.pcrysgrow.2006.09.002 http://dx.doi.org/10.1016/j.pcrysgrow.2006.09.002
ČÍŽEK J , VALENTA J , HRUŠKA P , et al . Origin of green luminescence in hydrothermally grown ZnO single crystals [J]. Appl. Phys. Lett. , 2015 , 106 ( 25 ): 251902 . doi: 10.1063/1.4922944 http://dx.doi.org/10.1063/1.4922944
AHN C H , KIM Y Y , KIM D C , et al . A comparative analysis of deep level emission in ZnO layers deposited by various methods [J]. J. Appl. Phys. , 2009 , 105 ( 8 ): 013502 . doi: 10.1063/1.3112042 http://dx.doi.org/10.1063/1.3112042
LIU Y , GORLA C R , LIANG S , et al . Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD [J]. J. Electron. Mater. , 2000 , 29 ( 1 ): 69 - 74 . doi: 10.1007/s11664-000-0097-1 http://dx.doi.org/10.1007/s11664-000-0097-1
ERGIN B , KETENCI E , ATAY F . Characterization of ZnO films obtained by ultrasonic spray pyrolysis technique [J]. Int. J. Hydrogen Energy , 2009 , 34 ( 12 ): 5249 - 5254 . doi: 10.1016/j.ijhydene.2008.09.108 http://dx.doi.org/10.1016/j.ijhydene.2008.09.108
KIND H , YAN H Q , MESSER B , et al . Nanowire ultraviolet photodetectors and optical switches [J]. Adv. Mater. , 2002 , 14 ( 2 ): 158 - 160 . doi: 10.1002/1521-4095(20020116)14:2<158::aid-adma158>3.0.co;2-w http://dx.doi.org/10.1002/1521-4095(20020116)14:2<158::aid-adma158>3.0.co;2-w
SOCI C , ZHANG A , XIANG B , et al . ZnO nanowire UV photodetectors with high internal gain [J]. Nano Lett. , 2007 , 7 ( 4 ): 1003 - 1009 . doi: 10.1021/nl070111x http://dx.doi.org/10.1021/nl070111x
SUWANBOON S , AMORNPITOKSUK P , SUKOLRAT A , et al . Optical and photocatalytic properties of La-doped ZnO nanoparticles prepared via precipitation and mechanical milling method [J]. Ceram. Int. , 2013 , 39 ( 3 ): 2811 - 2819 . doi: 10.1016/j.ceramint.2012.09.050 http://dx.doi.org/10.1016/j.ceramint.2012.09.050
HSU C L , CHANG S J . Doped ZnO 1D nanostructures: synthesis, properties, and photodetector application [J]. Small , 2014 , 10 ( 22 ): 4562 - 4585 . doi: 10.1002/smll.201401580 http://dx.doi.org/10.1002/smll.201401580
SINGH P , KUMAR A , DEEPAK , et al . Growth and characterization of ZnO nanocrystalline thin films and nanopowder via low-cost ultrasonic spray pyrolysis [J]. J. Cryst. Growth. , 2007 , 306 ( 2 ): 303 - 310 . doi: 10.1016/j.jcrysgro.2007.05.023 http://dx.doi.org/10.1016/j.jcrysgro.2007.05.023
XIONG G , WILKINSON J , MISCHUCK B , et al . Control of p - and n -type conductivity in sputter deposition of undoped ZnO [J]. Appl. Phys. Lett. , 2002 , 80 ( 7 ): 1195 - 1197 . doi: 10.1063/1.1449528 http://dx.doi.org/10.1063/1.1449528
MA Y , DU G T , YANG S R , et al . Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy [J]. J. Appl. Phys. , 2004 , 95 ( 11 ): 6268 - 6272 . doi: 10.1063/1.1713040 http://dx.doi.org/10.1063/1.1713040
OH M S , KIM S H , SEONG T Y . Growth of nominally undoped-type ZnO on Si by pulsed-laser deposition [J]. Appl. Phys. Lett. , 2005 , 87 ( 12 ): 122103 . doi: 10.1063/1.2056576 http://dx.doi.org/10.1063/1.2056576
DO-KYU L , KIM S , KIM M C , et al . Annealing effect on the electrical and the optical characteristics of undoped ZnO thin films grown on Si substrates by RF magnetron sputtering [J]. J. Korean Phys. Soc. , 2007 , 51 ( 4 ): 1378 - 1382 . doi: 10.3938/jkps.51.1378 http://dx.doi.org/10.3938/jkps.51.1378
CHO S G , NAHM T U , KIM E K . Deep level states and negative photoconductivity in n-ZnO/p-Si hetero-junction diodes [J]. Curr. Appl. Phys. , 2014 , 14 ( 3 ): 223 - 226 . doi: 10.1016/j.cap.2013.11.026 http://dx.doi.org/10.1016/j.cap.2013.11.026
LIN B X , FU Z X , JIA Y B . Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J]. Appl. Phys. Lett. , 2001 , 79 ( 7 ): 943 - 945 . doi: 10.1063/1.1394173 http://dx.doi.org/10.1063/1.1394173
LIN Y J , TSAI C L , LU Y M , et al . Optical and electrical properties of undoped ZnO films [J]. J. Appl. Phys. , 2006 , 99 ( 9 ): 093501 . doi: 10.1063/1.2193649 http://dx.doi.org/10.1063/1.2193649
KIM H R , KIM S , KIM C O , et al . Temperature-dependent negative photoconductivity of undoped ZnO films [J]. Thin Solid Films , 2009 , 518 ( 1 ): 305 - 308 . doi: 10.1016/j.tsf.2009.06.049 http://dx.doi.org/10.1016/j.tsf.2009.06.049
KAVASOGLU N , KAVASOGLU A S , OKTIK S . Observation of negative photoconductivity in (ZnO) x (CdO) 1- x films [J]. J. Phys. Chem. Solids. , 2009 , 70 ( 3-4 ): 521 - 526 . doi: 10.1016/j.jpcs.2008.11.018 http://dx.doi.org/10.1016/j.jpcs.2008.11.018
NAYAK J , KASUYA J , WATANABE A , et al . Persistent photoconductivity in ZnO nanorods deposited on electro-deposited seed layers of ZnO [J]. J. Phys.: Condens. Matter , 2008 , 20 ( 19 ): 195222 . doi: 10.1088/0953-8984/20/19/195222 http://dx.doi.org/10.1088/0953-8984/20/19/195222
AHN S E , JI H J , KIM K , et al . Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire [J]. Appl. Phys. Lett. , 2007 , 90 ( 15 ): 153106 . doi: 10.1063/1.2721289 http://dx.doi.org/10.1063/1.2721289
LIAO Z M , LU Y , XU J , et al . Temperature dependence of photoconductivity and persistent photoconductivity of single ZnO nanowires [J]. Appl. Phys. A , 2009 , 95 ( 2 ): 363 - 366 . doi: 10.1007/s00339-008-5058-1 http://dx.doi.org/10.1007/s00339-008-5058-1
ZHENG X G , LI Q S , ZHAO J P , et al . Photoconductive ultraviolet detectors based on ZnO films [J]. Appl. Surf. Sci. , 2006 , 253 ( 4 ): 2264 - 2267 . doi: 10.1016/j.apsusc.2006.04.031 http://dx.doi.org/10.1016/j.apsusc.2006.04.031
SUN J A , LIU F J , HUANG H Q , et al . Fast response ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by radio-frequency magnetron sputtering [J]. Appl. Surf. Sci. , 2010 , 257 ( 3 ): 921 - 924 . doi: 10.1016/j.apsusc.2010.07.091 http://dx.doi.org/10.1016/j.apsusc.2010.07.091
DAS S N , MOON K J , KAR J P , et al . ZnO single nanowire-based UV detectors [J]. Appl. Phys. Lett. , 2010 , 97 ( 2 ): 022103 . doi: 10.1063/1.3464287 http://dx.doi.org/10.1063/1.3464287
HASSAN J J , MAHDI M A , KASIM S J , et al . High sensitivity and fast response and recovery times in a ZnO nanorod array/ p -Si self-powered ultraviolet detector [J]. Appl. Phys. Lett. , 2012 , 101 ( 26 ): 261108 . doi: 10.1063/1.4773245 http://dx.doi.org/10.1063/1.4773245
LUO Y M , YIN B , ZHANG H Q , et al . Piezoelectric effect enhancing decay time of p-NiO/n-ZnO ultraviolet photodetector [J]. Appl. Surf. Sci. , 2016 , 361 : 157 - 161 . doi: 10.1016/j.apsusc.2015.11.158 http://dx.doi.org/10.1016/j.apsusc.2015.11.158
DUSARI S , BARZOLA-QUIQUIA J , ESQUINAZI P , et al . Changes in the electrical transport of ZnO under visible light [J]. Solid State Commun. , 2010 , 150 ( 1-2 ): 22 - 26 . doi: 10.1016/j.ssc.2009.10.015 http://dx.doi.org/10.1016/j.ssc.2009.10.015
CHOLULA-DÍAZ J L , BARZOLA-QUIQUIA J , VIDEA M , et al . The frequency-dependent AC photoresistance behavior of ZnO thin films grown on different sapphire substrates [J]. Phys. Chem. Chem. Phys. , 2017 , 19 ( 35 ): 23919 - 23923 . doi: 10.1039/c7cp04052k http://dx.doi.org/10.1039/c7cp04052k
MURPHY T E , MOAZZAMI K , PHILLIPS J D . Trap-related photoconductivity in ZnO epilayers [J]. J. Electron. Mater. , 2006 , 35 ( 4 ): 543 - 549 . doi: 10.1007/s11664-006-0097-x http://dx.doi.org/10.1007/s11664-006-0097-x
JAVADI M , ABDI Y . Frequency-driven bulk-to-surface transition of conductivity in ZnO nanowires [J]. Appl. Phys. Lett. , 2018 , 113 ( 5 ): 051603 . doi: 10.1063/1.5039474 http://dx.doi.org/10.1063/1.5039474
CHANG P C , LU J G . Temperature dependent conduction and UV induced metal-to-insulator transition in ZnO nanowires [J]. Appl. Phys. Lett. , 2008 , 92 ( 21 ): 212113 . doi: 10.1063/1.2937847 http://dx.doi.org/10.1063/1.2937847
ZAREZADEH E , GHORBANI A . Bipolar photoresponse ultraviolet photodetectors based on ZnO nanowires [J]. Mater. Res. Express , 2020 , 7 ( 5 ): 056203 . doi: 10.1088/2053-1591/ab9205 http://dx.doi.org/10.1088/2053-1591/ab9205
CHOI J , LUO Y , WEHRSPOHN R B , et al . Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers [J]. J. Appl. Phys. , 2003 , 94 ( 8 ): 4757 - 4762 . doi: 10.1063/1.1609033 http://dx.doi.org/10.1063/1.1609033
YAMAMOTO Y , BABA N , TAJIMA S . Coloured materials and photoluminescence centres in anodic film on aluminium [J]. Nature , 1981 , 289 ( 5798 ): 572 - 574 . doi: 10.1038/289572a0 http://dx.doi.org/10.1038/289572a0
XIONG G , ELAM J W , FENG H , et al . Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes [J]. J. Phys. Chem. B , 2005 , 109 ( 29 ): 14059 - 14063 . doi: 10.1021/jp0503415 http://dx.doi.org/10.1021/jp0503415
FAN Z Y , DUTTA D , CHIEN C J , et al . Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays [J]. Appl. Phys. Lett. , 2006 , 89 ( 21 ): 213110 . doi: 10.1063/1.2387868 http://dx.doi.org/10.1063/1.2387868
SEN S , CHOWDHARY D , KOUKLIN N A . Negative photoconduction of planar heterogeneous random network of ZnO-carbon nanotubes [J]. Appl. Phys. Lett. , 2007 , 91 ( 9 ): 093125 . doi: 10.1063/1.2789707 http://dx.doi.org/10.1063/1.2789707
PANIGRAHI S , BERA A , BASAK D . Encapsulation of 2-3-nm-sized ZnO quantum dots in a SiO 2 matrix and observation of negative photoconductivity [J]. ACS Appl. Mater. Interfaces , 2009 , 1 ( 10 ): 2408 - 2411 . doi: 10.1021/am9005513 http://dx.doi.org/10.1021/am9005513
HARIKRISHNAN G , VEMPATI S , PRAJAPATI K N , et al . Negative photoresponse in ZnO-PEDOT∶PSS nanocomposites and photogating effects [J]. Nanoscale Adv. , 2019 , 1 ( 6 ): 2435 - 2443 . doi: 10.1039/c9na00116f http://dx.doi.org/10.1039/c9na00116f
JANOTTI A , VAN DE WALLE C G . Fundamentals of zinc oxide as a semiconductor [J]. Rep. Prog. Phys. , 2009 , 72 ( 12 ): 126501 . doi: 10.1088/0034-4885/72/12/126501 http://dx.doi.org/10.1088/0034-4885/72/12/126501
NANDI S , KUMAR S , MISRA A . Zinc oxide heterostructures: advances in devices from self-powered photodetectors to self-charging supercapacitors [J]. Mater. Adv. , 2021 , 2 ( 21 ): 6768 - 6799 . doi: 10.1039/d1ma00670c http://dx.doi.org/10.1039/d1ma00670c
LI Y B , DELLA VALLE F , SIMONNET M , et al . Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires [J]. Appl. Phys. Lett. , 2009 , 94 ( 2 ): 023110 . doi: 10.1063/1.3073042 http://dx.doi.org/10.1063/1.3073042
PENG L , ZHAI J L , WANG D J , et al . Anomalous photoconductivity of cobalt-doped zinc oxide nanobelts in air [J]. Chem. Phys. Lett. , 2008 , 456 ( 4-6 ): 231 - 235 . doi: 10.1016/j.cplett.2008.03.052 http://dx.doi.org/10.1016/j.cplett.2008.03.052
VARGAS L M B , DE CASTRO S , PERES M L , et al . Tuning positive and negative photoconductivity in Zn 1- x Cd x O films [J]. J. Alloy. Compd. , 2018 , 749 : 734 - 740 . doi: 10.1016/j.jallcom.2018.03.327 http://dx.doi.org/10.1016/j.jallcom.2018.03.327
HAMDAOUI N , AMOR F B , MEZNI A , et al . Coexistence of room-temperature negative differential resistance, negative photoconductivity modulated by UV light intensity and optical switching in Cu/Ni∶ZnO/InGa structure [J]. J. Alloy. Compd. , 2021 , 851 : 156758 . doi: 10.1016/j.jallcom.2020.156758 http://dx.doi.org/10.1016/j.jallcom.2020.156758
MZOUGHI T , AMOR FBEN , HAMROUNI A , et al . Negative photoconductivity and high detectivity in Ba-doped ZnO UV photodetectors [J]. Ceram. Int. , 2024 , 50 ( 23 ): 49011 - 49020 . doi: 10.1016/j.ceramint.2024.09.242 http://dx.doi.org/10.1016/j.ceramint.2024.09.242
YANG X , WANG C J , SHAN C X , et al . An ultraviolet-visible distinguishable broadband photodetector based on the positive and negative photoconductance effects of a graphene/ZnO quantum dot heterostructure [J]. Microstructures , 2023 , 3 : 2023005 . doi: 10.20517/microstructures.2022.24 http://dx.doi.org/10.20517/microstructures.2022.24
AN J K , CHEN G Y , ZHU X , et al . Ambipolar photoresponse of CsPb X 3 -ZnO ( X =Cl, Br, and I) heterojunctions [J]. ACS Appl. Electron. Mater. , 2022 , 4 ( 4 ): 1525 - 1532 . doi: 10.1021/acsaelm.1c01085 http://dx.doi.org/10.1021/acsaelm.1c01085
CHEN F , SHI Z L , CHEN J P , et al . Dynamics of interfacial carriers and negative photoconductance in CH 3 NH 3 PbBr 3 -ZnO heterostructure [J]. Appl. Phys. Lett. , 2021 , 118 ( 17 ): 171901 . doi: 10.1063/5.0047122 http://dx.doi.org/10.1063/5.0047122
LV Y J , CHEN F , ZHANG Z H , et al . Ag nanowires assisted CH 3 NH 3 PbBr 3 -ZnO heterostructure with fast negative photoconductive response [J]. Appl. Phys. Lett. , 2022 , 121 ( 6 ): 061902 . doi: 10.1063/5.0099006 http://dx.doi.org/10.1063/5.0099006
0
浏览量
119
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构