1.浙江大学 光电科学与工程学院,极端光学技术与仪器全国重点实验室,浙江 杭州 310058
2.浙江大学 材料科学与工程学院,浙江 杭州 310058
[ "陈道远(1998-),男,贵州黔南人,2020年于南开大学获得学士学位,2020年至今在浙江大学光电工程学院攻读博士学位,主要从事新型光放大器件的研究。E-mail: 12230097@zju.edu.cn" ]
[ "许贝贝(1988-),男,安徽人,博士研究生,浙江大学百人计划研究员,博士生导师,2014年于浙江大学获得博士学位,研究覆盖光电材料基础与器件应用诸多领域,包括材料光学行为、光子电子作用、界面激子作用,在低维柔性多功能材料和器件,光通讯和量子通讯用发光材料与器件,自驱动红外辐射超材料和产品研发等。E-mail: bbxu2019@zju.edu.cn" ]
[ "刘小峰(1983-),男,江苏人,博士研究生,副教授,博士生导师,2010年于中国科学院上海光学与精密机械研究所获博士学位,研究方向主要是非线性光学材料与器件和光功能玻璃材料与器件。E-mail: xfliu@zju.edu.cn" ]
[ "邱建荣(1964-),男,浙江宁波人,博士研究生,教育部长江特聘教授,国家杰出青年基金获得者, 美国光学学会Fellow, 美国陶瓷学会Fellow, 世界陶瓷科学院院士。研究方向包括新型光电功能材料与器件(特别是玻璃与微晶玻璃光纤)、强场(飞秒激光等)与材料的相互作用、纳米发光材料与器件和非线性光学材料(二维材料与拓扑绝缘体)等 E-mail: qjr@zju.edu.cn" ]
扫 描 看 全 文
陈道远, 崔俊杰, 许贝贝, 等. PbS量子点掺杂聚合物宽带光纤放大器[J/OL]. 发光学报, 2023,1-9.
Chen Daoyuan, Cui Junjie, Xu Beibei, et al. PbS quantum dot doped polymer broadband optical fiber amplifier[J/OL]. Chinese Journal of Luminescence, 2023,1-9.
陈道远, 崔俊杰, 许贝贝, 等. PbS量子点掺杂聚合物宽带光纤放大器[J/OL]. 发光学报, 2023,1-9. DOI: 10.37188/CJL.20230140.
Chen Daoyuan, Cui Junjie, Xu Beibei, et al. PbS quantum dot doped polymer broadband optical fiber amplifier[J/OL]. Chinese Journal of Luminescence, 2023,1-9. DOI: 10.37188/CJL.20230140.
随着人工智能、大数据、云计算、物联网、移动电子等的发展,传统的稀土离子掺杂单芯单模光纤放大器承载的光纤通信系统的传输容量已经逐渐接近香农极限,需要发展新型材料体系,以拓宽光纤通信系统的传输容量。相比于稀土离子,量子点具有较宽的发光带宽、可调波长的发光特性,且量子点的发光性质可以通过多种化学手段调控,在量子点光放大器上显示出了宽带光放大特性,受到学术界和产业界的广泛关注。在此背景下,本文提出将化学合成的PbS/CdS核壳量子点与低损耗聚合物集成,获得量子点掺杂光纤放大器,实现近红外通信波段可调波长、宽带光放大特性。文章研究并揭示了影响固化后的聚合物纤芯连续性的因素和影响机制,提出了降低固化胶前驱体液面附加压力、固化收缩力、聚合物前驱体与光纤内壁的摩擦力,并提高抽真空产生的牵引力以获得连续光纤,在此基础上获得了基于热固化聚二甲基硅氧烷(PDMS)和光固化NOA61、NOA85固化胶的纤芯连续光纤,量子点光纤在1530-1630nm获得了增益带宽达到100nm以上的开关增益,最高增益达到6.5dB。本文的研究结果将促进量子点光纤器件和宽带光通信技术的发展。
With the development of artificial intelligence, big data, cloud computing, Internet of Things, mobile electronics, and so on, the transmission capacity of the traditional optical fiber communication system carried by the rare earth ion-doped single-core single-mode fiber amplifier has gradually approached the limit of Shannon’s law. It is necessary to develop a new material system to broaden the transmission capacity of the optical fiber communication system. Compared with rare earth ions, quantum dots (QDs) have a wide luminescence bandwidth and tunable wavelength, and the luminescence properties of QDs can be modulated by a variety of chemical means. QDs-doped optical amplifier shows broadband optical gain properties, which has attracted wide attention from academia and industry. In this context, this paper proposes to integrate chemically synthesized PbS/CdS core-shell QDs with low-loss polymer to obtain QDs -doped fiber amplifier (QDFA), realize tunable wavelength and broadband optical amplification in the near-infrared (NIR) communication band. This paper studies and reveals the factors and mechanisms affecting the continuity of polymer fiber. It proposes to reduce the additional pressure related to surface tension, contraction force during solidifying, the friction force by the inner wall of fiber core, and improve the traction force from the pumping by vacuum pump to obtain continuous optical fiber. By optimizing these factors, we obtained continuous fiber core based on heat curing PDMS and light curing NOA61 and NOA85 UV glue. Consequently, the QDFAs realizes the highest gain of 6.5dB, and gain bandwidth of more than 100nm. The results of this paper will facilitate the development of quantum dot fiber optic devices and broadband optical communication technologies.
量子点聚合物光纤宽带光纤放大器
quantum dotspolymer optical fiberbroadband optical fiber amplifier
RICHARDSON D J, FINI J M, NELSON L E. Space-division multiplexing in optical fibres [J]. Nature Photonics, 2013, 7(5): 354-362. doi: 10.1038/nphoton.2013.94http://dx.doi.org/10.1038/nphoton.2013.94
PUTTNAM B J, RADEMACHER G, LUíS R S. Space-division multiplexing for optical fiber communications [J]. Optica, 2021, 8(9). doi: 10.1364/optica.427631http://dx.doi.org/10.1364/optica.427631
CHENG C, HU N, CHENG X. Experimental realization of a PbSe quantum dot doped fiber amplifier with ultra-bandwidth characteristic [J]. Optics Communications, 2017, 382: 470-476. doi: 10.1016/j.optcom.2016.08.036http://dx.doi.org/10.1016/j.optcom.2016.08.036
CHENG C, WANG F, CHENG X. PbSe quantum-dot-doped broadband fiber amplifier based on sodium-aluminum-borosilicate-silicate glass [J]. Optics & Laser Technology, 2020, 122. doi: 10.1016/j.optlastec.2019.105812http://dx.doi.org/10.1016/j.optlastec.2019.105812
LIU Y, KIM D, MORRIS O P, et al. Origins of the Stokes Shift in PbS Quantum Dots: Impact of Polydispersity, Ligands, and Defects [J]. ACS Nano, 2018, 12(3): 2838-2845. doi: 10.1021/acsnano.8b00132http://dx.doi.org/10.1021/acsnano.8b00132
HUANG X, PENG Z, GUO Q, et al. Energy transfer process and temperature‐dependent photoluminescence of PbS quantum dot‐doped glasses [J]. Journal of the American Ceramic Society, 2018, 102(6): 3391-3401. doi: 10.1111/jace.16227http://dx.doi.org/10.1111/jace.16227
CHEN D, XU B, FANG Z, et al. Broadband Optical Amplification of PbS Quantum‐Dot‐Doped Glass Fibers [J]. Advanced Photonics Research, 2022, 3(9). doi: 10.1002/adpr.202200097http://dx.doi.org/10.1002/adpr.202200097
WHITTAKER C A, PERRET A, FORTIER C W, et al. Light-Generating CdSe/CdS Colloidal Quantum Dot-Doped Plastic Optical Fibers [J]. ACS Applied Nano Materials, 2020, 3(7): 6478-6488. doi: 10.1021/acsanm.0c00946http://dx.doi.org/10.1021/acsanm.0c00946
SUN X, ZHAO W, LIU L, et al. Enhancing environmental stability of a PbS quantum dot optical fiber amplifier via rational interface design [J]. Optical and Quantum Electronics, 2018, 50(4). doi: 10.1007/s11082-018-1431-2http://dx.doi.org/10.1007/s11082-018-1431-2
HUANG X, FANG Z, PENG Z, et al. Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers [J]. Optics Express, 2017, 25(17). doi: 10.1364/oe.25.019691http://dx.doi.org/10.1364/oe.25.019691
ZHENG J, DONG Y, PAN X, et al. Ultra-wideband and flat-gain optical properties of the PbS quantum dots-doped silica fiber [J]. Optics Express, 2019, 27(26). doi: 10.1364/oe.27.037900http://dx.doi.org/10.1364/oe.27.037900
FAN M, YAN Y, ZHOU S, et al. Mesoporous silica enriched PbS quantum dots for optical fiber amplifiers [J]. Optics Communications, 2021, 499. doi: 10.1016/j.optcom.2021.127310http://dx.doi.org/10.1016/j.optcom.2021.127310
WHITWORTH G L, DALMASES M, TAGHIPOUR N, et al. Solution-processed PbS quantum dot infrared laser with room-temperature tuneable emission in the optical telecommunications window [J]. Nat Photonics, 2021, 15(10): 738-742. doi: 10.1038/s41566-021-00878-9http://dx.doi.org/10.1038/s41566-021-00878-9
Y-SPARK, ROH J, DIROLL B T, et al. Colloidal quantum dot lasers [J]. Nature Reviews Materials, 2021, 6(5): 382-401. doi: 10.1038/s41578-020-00274-9http://dx.doi.org/10.1038/s41578-020-00274-9
VASILOPOULOU M, FAKHARUDDIN A, GARCíA DE ARQUER F P, et al. Advances in solution-processed near-infrared light-emitting diodes [J]. Nature Photonics, 2021, 15(9): 656-669. doi: 10.1038/s41566-021-00855-2http://dx.doi.org/10.1038/s41566-021-00855-2
HOU X, KANG J, QIN H, et al. Engineering Auger recombination in colloidal quantum dots via dielectric screening [J]. Nature Communications, 2019, 10(1). doi: 10.1038/s41467-019-09737-2http://dx.doi.org/10.1038/s41467-019-09737-2
AVDEEV I D, NESTOKLON M O, GOUPALOV S V. Exciton Fine Structure in Lead Chalcogenide Quantum Dots: Valley Mixing and Crucial Role of Intervalley Electron–Hole Exchange [J]. Nano Letters, 2020, 20(12): 8897-8902. doi: 10.1021/acs.nanolett.0c03937http://dx.doi.org/10.1021/acs.nanolett.0c03937
CHRISTODOULOU S, RAMIRO I, OTHONOS A, et al. Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots [J]. Nano Letters, 2020, 20(8): 5909-5915. doi: 10.1021/acs.nanolett.0c01859http://dx.doi.org/10.1021/acs.nanolett.0c01859
0
浏览量
14
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构