浏览全部资源
扫码关注微信
吉林大学 电子科学与工程学院, 吉林 长春 130012
[ "宋宏伟 (1967-),男,黑龙江阿城人,博士,教授,博士生导师,1996年于中国科学院长春物理研究所获得博士学位,主要从事稀土发光材料、光电子材料与器件的研究。 E-mail: songhw@jlu.edu.cn" ]
[ "周东磊 ( 1990-),博士,副教授,研究生导师,吉林大学“唐敖庆学者”青年学者,吉林省青年科技人才托举工程入选者。2018—2020年在新加坡南洋理工大学从事博士后研究,2020年聘为吉林大学副教授,主要从事新型稀土纳米发光材料、光电子能源器件的应用研究。在Advanced Materials, ACS Nano,Nano Letters, Light: Science & Applications, AdvancedEnergy Materials, Advanced Functional Materials, ACS Energy Letters 等学术期刊发表SCI 论文80 余篇,引用超过3 300 余次,H因子30,出版英文专著一章(Taylor & Francis出版社)。承担国家自然科学基金面上项目、国家自然科学基金青年项目、吉林省自然科学基金等项目,获2019年吉林省自然科学一等奖(排名第九),受邀在国际国内会议上做邀请报告10余次。担任《发光学报》青年编委,Nanomaterials, Frontiers in Chemistry 等期刊客座编辑。主要研究成果:1. 研制了新型宽谱带、强吸收的稀土掺杂钙钛矿纳米晶,获得了高效量子剪裁发光,并将其应用于提高晶硅电池的光电转换效率,被Science 杂志评价为“近年来最激动人心的工作之一”。2. 基于新型稀土掺杂钙钛矿材料,研制了单组分的白光电致发光LED 器件,获得了基于Er的近红外电致发光LED。3. 采用半导体表面等离子体调控稀土上转换发光,发现了双光子吸收增强稀土上转换荧光的新原理,获得了三个数量级的上转换荧光增强,并将其应用于高对比度、高亮度的角度防伪和光伏应用。4. 研制了紫外与红外双谱带响应的稀土光电探测器,发现了稀土在高压极限环境下依然保持高效发光的内在机制,构建了可视化探测阵列系统;开发了稀土量子点、天然材料敏化的高效钙钛矿太阳能电池,总结了稀土离子提升器件效率的关键原理。" ]
纸质出版日期:2023-03-05,
收稿日期:2022-11-16,
修回日期:2022-12-13,
扫 描 看 全 文
宋宏伟,周东磊,白雪等.稀土掺杂铅卤钙钛矿发光、光电材料与器件研究进展[J].发光学报,2023,44(03):387-412.
SONG hongwei,ZHOU donglei,BAI Xue,et al.Advances in Rare Earth Doped Lead Halide Perovskite Luminescence, Optoelectronic Materials and Devices[J].Chinese Journal of Luminescence,2023,44(03):387-412.
宋宏伟,周东磊,白雪等.稀土掺杂铅卤钙钛矿发光、光电材料与器件研究进展[J].发光学报,2023,44(03):387-412. DOI: 10.37188/CJL.20220391.
SONG hongwei,ZHOU donglei,BAI Xue,et al.Advances in Rare Earth Doped Lead Halide Perovskite Luminescence, Optoelectronic Materials and Devices[J].Chinese Journal of Luminescence,2023,44(03):387-412. DOI: 10.37188/CJL.20220391.
铅卤化物钙钛矿作为一类新兴的光电子材料表现出了卓越的光学、电学性能,在太阳能电池、发光二极管、光电探测器以及激光等领域产生了广泛而重要的应用,引起万众瞩目。稀土是元素周期表里一类特殊材料,从57号到71号元素,具有4f
n
和4f
n
-1
5d电子组态。如果将稀土和钙钛矿材料以及器件相结合,会孕育出怎样的新生儿呢?本文旨在结合作者在相关领域开展的工作及取得的经验,简单梳理该领域近年来取得的进展,剖析未来所面临的问题和挑战。本文不以总结纷繁复杂的个性化现象为要扼,而以探讨具有普遍意义的共性问题为宗旨。在资料选取上,或许失之偏颇,有严重的“王婆卖瓜”之嫌,请读者慎思明辨。
Lead halide perovskite, as a new class of optoelectronic materials, has demonstrated excellent optical and electrical properties, extensive and important applications in solar cells, light-emitting diodes, photodetectors, lasers and so on, attracting great attention. Rare earth is a special kind of material in the periodic table of elements,ranging the elements from 57 to 71, with 4f
n
and 4f
n
-1
5d electronic configurations. What kind of new baby will be born if rare earth combines with perovskite materials and devices? This paper aims to combine the author's work and experience in related fields, briefly review the progress made in this field in recent years, and search for the problems and challenges faced in the future. This article is not to summarize the complex individual phenomenon to be brief, but to explore the common problems of universal significance for the purpose. In the selection of data and information, it may be biased, and there is a serious suspicion of “Every potter praises his pot”, please think carefully.
稀土发光铅卤化物钙钛矿光电探测器太阳能电池
rare earth luminescencelead halide perovskitephotodetectorssolar cells
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. doi: 10.1021/ja809598rhttp://dx.doi.org/10.1021/ja809598r
LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition [J]. Nature, 2013, 501(7467): 395-398. doi: 10.1038/nature12509http://dx.doi.org/10.1038/nature12509
PARK J, KIM J, YUN H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides [J]. Nature, 2023, DOI:10.1038/S41586-023-05825-yhttp://dx.doi.org/10.1038/S41586-023-05825-y.
AL-ASHOURI A, KÖHNEN E, LI B, MAGOMEDOV A, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction [J]. Science, 2020, 370(6522): 1300-1309. doi: 10.1126/science.abd4016http://dx.doi.org/10.1126/science.abd4016
GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (Version 60) [J]. Prog. Photovolt. Res. Appl., 2022, 30(7): 687-701. doi: 10.1002/pip.3444http://dx.doi.org/10.1002/pip.3444
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
SHEN X Y, ZHANG Y, KERSHAW S V, et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices [J]. Nano Lett., 2019, 19(3): 1552-1559. doi: 10.1021/acs.nanolett.8b04339http://dx.doi.org/10.1021/acs.nanolett.8b04339
XIE Y J, PENG B, BRAVIĆ I, et al. Highly efficient blue-emitting CsPbBr3 perovskite nanocrystals through neodymium doping [J]. Adv. Sci., 2020, 7(20): 2001698-1-9. doi: 10.1002/advs.202001698http://dx.doi.org/10.1002/advs.202001698
YANG J N, SONG Y, YAO J S, et al. Potassium bromide surface passivation on CsPbI3-xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes [J]. J. Am. Chem. Soc., 2020, 142(6): 2956-2967. doi: 10.1021/jacs.9b11719http://dx.doi.org/10.1021/jacs.9b11719
LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent [J]. Nature, 2018, 562(7726): 245-248. doi: 10.1038/s41586-018-0575-3http://dx.doi.org/10.1038/s41586-018-0575-3
MA D X, LIN K B, DONG Y T, et al. Distribution control enables efficient reduced-dimensional perovskite LEDs [J]. Nature, 2021, 599(7886): 594-598. doi: 10.1038/s41586-021-03997-zhttp://dx.doi.org/10.1038/s41586-021-03997-z
ZHAO C Y, WU W P, ZHAN H M, et al. Phosphonate/phosphine oxide dyad additive for efficient perovskite light-emitting diodes [J]. Angew. Chem. Int. Ed., 2022, 61(13): e202117374-1-5. doi: 10.1002/anie.202117374http://dx.doi.org/10.1002/anie.202117374
DENG Y Z, PENG F, LU Y, et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage [J]. Nat. Photon., 2022, 16(7): 505-511. doi: 10.1038/s41566-022-00999-9http://dx.doi.org/10.1038/s41566-022-00999-9
WANG Y K, YUAN F L, DONG Y T, et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite [J]. Angew. Chem. Int. Ed., 2021, 60(29): 16164-16170. doi: 10.1002/anie.202104812http://dx.doi.org/10.1002/anie.202104812
JIANG J, CHU Z M, YIN Z G, et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations [J]. Adv. Mater., 2022, 34(36): 2204460-1-8. doi: 10.1002/adma.202204460http://dx.doi.org/10.1002/adma.202204460
WANG Y K, SINGH K, LI J Y, et al. In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids [J]. Adv. Mater., 2022, 34(21): 2200854-1-6. doi: 10.1002/adma.202200854http://dx.doi.org/10.1002/adma.202200854
WEI Q, LI X J, LIANG C, et al. Recent progress in metal halide perovskite micro- and nanolasers [J]. Adv. Opt. Mater., 2019, 7(17): 1900080-1-33. doi: 10.1002/adom.201900080http://dx.doi.org/10.1002/adom.201900080
DONG H Y, ZHANG C H, LIU X L, et al. Materials chemistry and engineering in metal halide perovskite lasers [J]. Chem. Soc. Rev., 2020, 49(3): 951-982. doi: 10.1039/c9cs00598fhttp://dx.doi.org/10.1039/c9cs00598f
BAO C X, YANG J, BAI S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications [J]. Adv. Mater., 2018, 30(38): 1803422-1-8. doi: 10.1002/adma.201870288http://dx.doi.org/10.1002/adma.201870288
PAN G C, BAI X, YANG D W, et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties [J]. Nano Lett., 2017, 17(12): 8005-8011. doi: 10.1021/acs.nanolett.7b04575http://dx.doi.org/10.1021/acs.nanolett.7b04575
HU Q S, LI Z, TAN Z F, et al. Rare earth ion-doped CsPbBr3 nanocrystals [J]. Adv. Opt. Mater., 2018, 6(2): 1700864-1-5. doi: 10.1002/adom.201700864http://dx.doi.org/10.1002/adom.201700864
YAO J S, GE J, HAN B N, et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes [J]. J. Am. Chem. Soc., 2018, 140(10): 3626-3634. doi: 10.1021/jacs.7b11955http://dx.doi.org/10.1021/jacs.7b11955
ZHU X, GE L, WANG Y, et al. Recent advances in enhancing and enriching the optical properties of cl-based CsPbX3 nanocrystals [J]. Adv. Opt. Mater., 2021, 9(16): 2100058-1-17. doi: 10.1002/adom.202100058http://dx.doi.org/10.1002/adom.202100058
MA X H, YANG L Q, LEI K X, et al. Doping in inorganic perovskite for photovoltaic application [J]. Nano Energy, 2020, 78: 105354. doi: 10.1016/j.nanoen.2020.105354http://dx.doi.org/10.1016/j.nanoen.2020.105354
ZHOU D L, LIU D L, PAN G C, et al. Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells [J]. Adv. Mater., 2017, 29(42): 1704149-1-6. doi: 10.1002/adma.201704149http://dx.doi.org/10.1002/adma.201704149
SUN R, LU P, ZHOU D L, et al. Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes [J]. ACS Energy Lett., 2020, 5(7): 2131-2139. doi: 10.1021/acsenergylett.0c00931http://dx.doi.org/10.1021/acsenergylett.0c00931
DING N, WU Y J, XU W, et al. A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared [J]. Light Sci. Appl., 2022, 11(1): 91-1-13. doi: 10.1038/s41377-022-00777-whttp://dx.doi.org/10.1038/s41377-022-00777-w
PAN G C, BAI X, SHEN X Y, et al. Bright red YCl3-promoted CsPbI3 perovskite nanorods towards efficient light-emitting diode [J]. Nano Energy, 2021, 81: 105615-1-8. doi: 10.1016/j.nanoen.2020.105615http://dx.doi.org/10.1016/j.nanoen.2020.105615
ZHOU D L, SUN R, XU W, et al. Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications [J]. Nano Lett., 2019, 19(10): 6904-6913. doi: 10.1021/acs.nanolett.9b02139http://dx.doi.org/10.1021/acs.nanolett.9b02139
LYU J, DONG B, PAN G C, et al. Ni2+ and Pr3+ co-doped CsPbCl3 perovskite quantum dots with efficient infrared emission at 1 300 nm [J]. Nanoscale, 2021, 13(39): 16598-16607. doi: 10.1039/d1nr04455ahttp://dx.doi.org/10.1039/d1nr04455a
LUO J J, YANG L B, TAN Z F, et al. Efficient blue light emitting diodes based on europium halide perovskites [J]. Adv. Mater., 2021, 33(38): 2101903-1-9.. doi: 10.1002/adma.202101903http://dx.doi.org/10.1002/adma.202101903
HUANG J M, LEI T, SIRON M, et al. Lead-free cesium europium halide perovskite nanocrystals [J]. Nano Lett., 2020, 20(5): 3734-3. doi: 10.1021/acs.nanolett.0c00692http://dx.doi.org/10.1021/acs.nanolett.0c00692
LIU X L, CUI D L, WANG Q, et al. Photoluminescence enhancement of ZrO2/Rhodamine B nanocomposites [J]. J. Mater. Sci., 2005, 40(5): 1111-1114. doi: 10.1007/s10853-005-6925-1http://dx.doi.org/10.1007/s10853-005-6925-1
LIU Y N, PAN G C, WANG R, et al. Considerably enhanced exciton emission of CsPbCl3 perovskite quantum dots by the introduction of potassium and lanthanide ions [J]. Nanoscale, 2018, 10(29): 14067-14072. doi: 10.1039/c8nr03581dhttp://dx.doi.org/10.1039/c8nr03581d
CORTECCHIA D, MRÓZ W, FOLPINI G, et al. Layered perovskite doping with Eu3+ and β-diketonate Eu3+ complex [J]. Chem. Mater., 2021, 33(7): 2289-2297. doi: 10.1021/acs.chemmater.0c04097http://dx.doi.org/10.1021/acs.chemmater.0c04097
WU R X, HAN P G, ZHENG D Y, et al. All-inorganic rare-earth-based double perovskite nanocrystals with near-infrared emission [J]. Laser Photonics Rev., 2021, 15(11): 2100218-1-7. doi: 10.1002/lpor.202100218http://dx.doi.org/10.1002/lpor.202100218
LEE M, CHUNG H, HONG S V, et al. Dynamically tunable multicolor emissions from zero-dimensional Cs3LnCl6(Ln: europium and terbium) nanocrystals with wide color gamut [J]. Nanoscale, 2023, 15(4): 1513-1521.. doi: 10.1039/d2nr04771chttp://dx.doi.org/10.1039/d2nr04771c
BAHMANI JALALI H, PIANETTI A, ZITO J, et al. Cesium manganese bromide nanocrystal sensitizers for broadband Vis-to-NIR downshifting [J]. ACS Energy Lett., 2022, 7(5): 1850-1858. doi: 10.1021/acsenergylett.2c00311http://dx.doi.org/10.1021/acsenergylett.2c00311
ZENG M, ARTIZZU F, LIU J, et al. Boosting the Er3+ 1.5 μm luminescence in CsPbCl3 perovskite nanocrystals for photonic devices operating at telecommunication wavelengths. ACS Appl. Nano Mater., 2020, 3(5): 4699-4707. doi: 10.1021/acsanm.0c00701http://dx.doi.org/10.1021/acsanm.0c00701
CHEN N, CAI T, LI W H, et al. Yb- and Mn-doped lead-free double perovskite Cs2AgBiX6(X = Cl-, Br-) nanocrystals [J]. ACS Appl. Mater. Interfaces, 2019, 11(18): 16855-16863. doi: 10.1021/acsami.9b02367http://dx.doi.org/10.1021/acsami.9b02367
MILSTEIN T J, KLUHERZ K T, KROUPA D M, et al. Anion exchange and the quantum-cutting energy threshold in ytterbium-doped CsPb(Cl1-xBrx)3 perovskite nanocrystals [J]. Nano Lett., 2019, 19(3): 1931-1937. doi: 10.1021/acs.nanolett.8b05104http://dx.doi.org/10.1021/acs.nanolett.8b05104
MIR W J, MAHOR Y, LOHAR A, et al. Postsynthesis doping of Mn and Yb into CsPbX3(X = Cl, Br, or I) perovskite nanocrystals for downconversion emission [J]. Chem. Mater., 2018, 30(22): 8170-8178. doi: 10.1021/acs.chemmater.8b03066http://dx.doi.org/10.1021/acs.chemmater.8b03066
LI H F, LIU X Q, ZHOU D L, et al. Realization of 1.54⁃μm light⁃emitting diodes based on Er3+/Yb3+ co⁃doped CsPbCl3 films [J]. Adv. Mater., 2023, doi.org/10.1002/adma.202300118.
WEGH R T, DONKER H, OSKAM K D, et al. Visible quantum cutting in ligdf4∶Eu3+ through downconversion [J]. Science, 1999, 283(5402): 663-666. doi: 10.1126/science.283.5402.663http://dx.doi.org/10.1126/science.283.5402.663
DEXTER D L. Possibility of luminescent quantum yields greater than unity [J]. Phys. Rev., 1957, 108(3): 630-633. doi: 10.1103/physrev.108.630http://dx.doi.org/10.1103/physrev.108.630
ZHANG Q Y, HUANG X Y. Recent progress in quantum cutting phosphors [J]. Prog. Mater. Sci., 2010, 55(5): 353-427. doi: 10.1016/j.pmatsci.2009.10.001http://dx.doi.org/10.1016/j.pmatsci.2009.10.001
PIPER W W, DELUCA J A, HAM F S. Cascade fluorescent decay in Pr3+-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light [J]. J. Lumin., 1974, 8(4): 344-348. doi: 10.1016/0022-2313(74)90007-6http://dx.doi.org/10.1016/0022-2313(74)90007-6
TRUPKE T, GREEN M A, WÜRFEL P. Improving solar cell efficiencies by down-conversion of high-energy photons [J]. J. Appl. Phys., 2002, 92(3): 1668-1674. doi: 10.1063/1.1492021http://dx.doi.org/10.1063/1.1492021
JI Y N, XU W, DING N, et al. Huge upconversion luminescence enhancement by a cascade optical field modulation strategy facilitating selective multispectral narrow-band near-infrared photodetection [J]. Light Sci. Appl., 2020, 9(1): 184-1. doi: 10.1038/s41377-020-00418-0http://dx.doi.org/10.1038/s41377-020-00418-0
DING N, XU W, ZHOU D L, et al. Extremely efficient quantum-cutting Cr3+, Ce3+, Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of silicon photodetectors with external quantum efficiency exceeding 70% [J]. Nano Energy, 2020, 78: 105278. doi: 10.1016/j.nanoen.2020.105278http://dx.doi.org/10.1016/j.nanoen.2020.105278
KROUPA D M, ROH J Y, MILSTEIN T J, et al. Quantum-cutting ytterbium-doped CsPb(Cl1-xBrx)3 perovskite thin films with photoluminescence quantum yields over 190% [J]. ACS Energy Lett., 2018, 3(10): 2390-2395. doi: 10.1021/acsenergylett.8b01528http://dx.doi.org/10.1021/acsenergylett.8b01528
MILSTEIN T J, KROUPA D M, GAMELIN D R. Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals [J]. Nano Lett., 2018, 18(6): 3792-3799. doi: 10.1021/acs.nanolett.8b01066http://dx.doi.org/10.1021/acs.nanolett.8b01066
ROBERT F S. Marrying two types of solar cells draws more power from the sun [J]. Science, 2019, aax6503. doi: 10.1126/science.aax6503http://dx.doi.org/10.1126/science.aax6503
SUN R, ZHOU D L, DING Y J, et al. Efficient single-component white light emitting diodes enabled by lanthanide ions doped lead halide perovskites via controlling Förster energy transfer and specific defect clearance [J]. Light Sci. Appl., 2022, 11(1): 340-1-15. doi: 10.1038/s41377-022-01027-9http://dx.doi.org/10.1038/s41377-022-01027-9
ISHII A, MIYASAKA T. Sensitized Yb3+ luminescence in CsPbCl3 film for highly efficient near-infrared light-emitting diodes [J]. Adv. Sci., 2020, 7(4): 1903142-1-7. doi: 10.1002/advs.201903142http://dx.doi.org/10.1002/advs.201903142
ZHAO W Q, WANG P F, RAN G Z, et al. 1.54 µm Er3+ electroluminescence from an erbium-compound-doped organic light emitting diode with a p-type silicon anode [J]. J. Phys. D: Appl. Phys., 2006, 39(13): 2711. doi: 10.1088/0022-3727/39/13/013http://dx.doi.org/10.1088/0022-3727/39/13/013
LI H F, LIU X Q, LYU C, et al. Enhanced 1.54 μm photo- and electroluminescence based on a perfluorinated Er(Ⅲ) complex utilizing an iridium(Ⅲ) complex as a sensitizer [J]. Light Sci. Appl., 2020, 9: 32-1-10. doi: 10.1038/s41377-020-0266-3http://dx.doi.org/10.1038/s41377-020-0266-3
JING X L, ZHOU D L, SUN R, et al. Enhanced photoluminescence and photoresponsiveness of Eu3+ Ions-doped CsPbCl3 perovskite quantum dots under high pressure [J]. Adv. Funct. Mater., 2021, 31(31): 2100930-1-10. doi: 10.1002/adfm.202100930http://dx.doi.org/10.1002/adfm.202100930
MA Z W, LIU Z, LU S Y, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals [J]. Nat. Commun., 2018, 9(1): 4506-1-8. doi: 10.1038/s41467-018-06840-8http://dx.doi.org/10.1038/s41467-018-06840-8
WANG X Y, TIAN H, LI X, et al. Pressure effects on the structures and electronic properties of halide perovskite CsPbX3 (X = I, Br, Cl) [J]. Phys. Chem. Chem. Phys., 2021, 23(5): 3479-3484. doi: 10.1039/d0cp05892khttp://dx.doi.org/10.1039/d0cp05892k
LI M, PENG S, FANG S Y, et al. Synthesis of two-dimensional CsPb2X5 (X = Br and I) with a stable structure and tunable bandgap by CsPbX3 phase separation [J]. J. Phys. Chem. Lett., 2022, 13(11): 2555-2562. doi: 10.1021/acs.jpclett.2c00116http://dx.doi.org/10.1021/acs.jpclett.2c00116
HUANG S, JIAO M Z, WANG X, et al. A first-principles study on the structural and carrier transport properties of inorganic perovskite CsPbI3 under pressure [J]. Crystals, 2022, 12(5): 648-1-9. doi: 10.3390/cryst12050648http://dx.doi.org/10.3390/cryst12050648
NIU G D, GUO X D, WANG L D. Review of recent progress in chemical stability of perovskite solar cells [J]. J. Mater. Chem. A, 2015, 3(17): 8970-8980. doi: 10.1039/c4ta04994bhttp://dx.doi.org/10.1039/c4ta04994b
JENA A K, KULKARNI A, MIYASAKA T. Halide perovskite photovoltaics: background, status, and future prospects [J]. Chem. Rev., 2019, 119(5): 3036-3103. doi: 10.1021/acs.chemrev.8b00539http://dx.doi.org/10.1021/acs.chemrev.8b00539
BERHE T A, SU W N, CHEN C H, et al. Organometal halide perovskite solar cells: degradation and stability [J]. Energy Environ. Sci., 2016, 9(2): 323-356. doi: 10.1039/c5ee02733khttp://dx.doi.org/10.1039/c5ee02733k
JUNG H S, PARK N G. Perovskite solar cells: from materials to devices [J]. Small, 2015, 11(1): 10-25. doi: 10.1002/smll.201402767http://dx.doi.org/10.1002/smll.201402767
PARK N G. Perovskite solar cells: an emerging photovoltaic technology [J]. Mater. Today, 2015, 18(2): 65-72. doi: 10.1016/j.mattod.2014.07.007http://dx.doi.org/10.1016/j.mattod.2014.07.007
ZHOU H P, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells [J]. Science, 2014, 345(6196): 542-546. doi: 10.1126/science.1254050http://dx.doi.org/10.1126/science.1254050
SALIBA M, MATSUI T, SEO J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency [J]. Energy Environ. Sci., 2016, 9(6): 1989-1997. doi: 10.1039/c5ee03874jhttp://dx.doi.org/10.1039/c5ee03874j
CHEN W J, LI D, CHEN S S, et al. Spatial distribution recast for organic bulk heterojunctions for high-performance all-inorganic perovskite/organic integrated solar cells [J]. Adv. Energy Mater., 2020, 10(35): 2000851-1-12. doi: 10.1002/aenm.202000851http://dx.doi.org/10.1002/aenm.202000851
HU L, ZHAO Q, HUANG S J, et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture [J]. Nat. Commun., 2021, 12(1): 466-1-9. doi: 10.1038/s41467-020-20749-1http://dx.doi.org/10.1038/s41467-020-20749-1
EGGIMANN H J, PATEL J B, JOHNSTON M B, et al. Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells [J]. Nat. Commun., 2020, 11(1): 5525-1-11. doi: 10.1038/s41467-020-19268-whttp://dx.doi.org/10.1038/s41467-020-19268-w
SHI Z C, ZHOU D L, WU Y J, et al. Dual interfacial engineering to improve ultraviolet and near-infrared light harvesting for efficient and stable perovskite solar cells [J]. Chem. Eng. J., 2022, 435: 134792-1-12. doi: 10.1016/j.cej.2022.134792http://dx.doi.org/10.1016/j.cej.2022.134792
CHEN C, WU Y J, LIU L, et al. Interfacial engineering and photon downshifting of CsPbBr3 nanocrystals for efficient, stable, and colorful vapor phase perovskite solar cells [J]. Adv. Sci., 2019, 6(11): 1802046-1-9. doi: 10.1002/advs.201802046http://dx.doi.org/10.1002/advs.201802046
CHEN X, XU W, SONG H W, et al. Highly efficient LiYF4∶Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application [J]. ACS Appl. Mater. Interfaces, 2016, 8(14): 9071-9079. doi: 10.1021/acsami.5b12528http://dx.doi.org/10.1021/acsami.5b12528
IN J J, LI H, CHEN C, et al. Improving efficiency and light stability of perovskite solar cells by incorporating YVO4∶Eu3+, Bi3+ nanophosphor into the mesoporous TiO2 layer [J]. ACS Appl. Energy Mater., 2018, 1(5): 2096-2102.
CHEN C, LI H, JIN J J, et al. Long-lasting nanophosphors applied to UV-resistant and energy storage perovskite solar cells [J]. Adv. Energy Mater., 2017, 7(20): 1700758-1-11. doi: 10.1002/aenm.201700758http://dx.doi.org/10.1002/aenm.201700758
ZHUANG X M, SUN R, ZHOU D L, et al. Synergistic effects of multifunctional lanthanides doped CsPbBrCl2 quantum dots for efficient and stable MAPbI3 perovskite solar cells [J]. Adv. Funct. Mater., 2022, 32(18): 2110346-1-14. doi: 10.1002/adfm.202110346http://dx.doi.org/10.1002/adfm.202110346
CHEN X F, XU L, CHEN C, et al. Rare earth ions doped NiOx hole transport layer for efficient and stable inverted perovskite solar cells [J]. J. Power Sources, 2019, 444: 227267-1-8. doi: 10.1016/j.jpowsour.2019.227267http://dx.doi.org/10.1016/j.jpowsour.2019.227267
LIU B, WANG Y Q, WU Y J, et al. Simultaneous bottom-up double-layer synergistic optimization by multifunctional fused-ring acceptor with electron-deficient core for stable planar perovskite solar cells with approaching 24% efficiency [J]. Nano Energy, 2022, 99: 107368. doi: 10.1016/j.nanoen.2022.107368http://dx.doi.org/10.1016/j.nanoen.2022.107368
ZHOU D L, LIU D L, JIN J J, et al. Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells [J]. J. Mater. Chem. A, 2017, 5(32): 16559-16567. doi: 10.1039/c7ta04943ahttp://dx.doi.org/10.1039/c7ta04943a
XU W, CHEN X, SONG H W. Upconversion manipulation by local electromagnetic field [J]. Nano Today, 2017, 17: 54-78. doi: 10.1016/j.nantod.2017.10.011http://dx.doi.org/10.1016/j.nantod.2017.10.011
WU Y J, DING N, ZHANG Y H, et al. Toward broad spectral response inverted perovskite solar cells: insulating quantum-cutting perovskite nanophosphors and multifunctional ternary organic bulk-heterojunction [J]. Adv. Energy Mater., 2022, 12(16): 2200005-1-13. doi: 10.1002/aenm.202200005http://dx.doi.org/10.1002/aenm.202200005
CHEN C, LI H, JIN J J, et al. Highly enhanced long time stability of perovskite solar cells by involving a hydrophobic hole modification layer [J]. Nano Energy, 2017, 32: 165-173. doi: 10.1016/j.nanoen.2016.12.009http://dx.doi.org/10.1016/j.nanoen.2016.12.009
WU Y J, GAO Y B, ZHUANG X M, et al. Highly efficient near-infrared hybrid perovskite solar cells by integrating with a novel organic bulk-heterojunction [J]. Nano Energy, 2020, 77: 105181-1-10. doi: 10.1016/j.nanoen.2020.105181http://dx.doi.org/10.1016/j.nanoen.2020.105181
WU Y J, BI W B, SHI Z C, et al. Unraveling the dual-functional mechanism of light absorption and hole transport of Cu2CdxZn1–xSnS4 for achieving efficient and stable perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2020, 12(15): 17509-17518. doi: 10.1021/acsami.0c00607http://dx.doi.org/10.1021/acsami.0c00607
LI H, CHEN C, JIN J J, et al. Near-infrared and ultraviolet to visible photon conversion for full spectrum response perovskite solar cells [J]. Nano Energy, 2018, 50: 699-709. doi: 10.1016/j.nanoen.2018.06.024http://dx.doi.org/10.1016/j.nanoen.2018.06.024
LU H, DENG K M, YAN N N, et al. Efficient perovskite solar cells based on novel three-dimensional TiO2 network architectures [J]. Sci. Bull., 2016, 61(10): 778-786. doi: 10.1007/s11434-016-1050-xhttp://dx.doi.org/10.1007/s11434-016-1050-x
CHEN C, LIU D, WU Y, et al. Dual interfacial modifications by conjugated small-molecules and lanthanides doping for full functional perovskite solar cells [J]. Nano Energy, 2018, 53: 849-62. doi: 10.1016/j.nanoen.2018.09.037http://dx.doi.org/10.1016/j.nanoen.2018.09.037
CHEN X, XU W, DING N, et al. Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells [J]. Adv. Funct. Mater., 2020, 30(30): 2003295-1-11.. doi: 10.1002/adfm.202003295http://dx.doi.org/10.1002/adfm.202003295
ZHANG Y H, XU L, WU Y J, et al. Double-layer synergistic optimization by functional black phosphorus quantum dots for high-efficiency and stable planar perovskite solar cells [J]. Nano Energy, 2021, 90: 106610. doi: 10.1016/j.nanoen.2021.106610http://dx.doi.org/10.1016/j.nanoen.2021.106610
CHEN C, LIU D L, ZHANG B X, et al. Carrier interfacial engineering by bismuth modification for efficient and thermoresistant perovskite solar cells [J]. Adv. Energy Mater., 2018, 8(20): 1703659-1-11. doi: 10.1002/aenm.201703659http://dx.doi.org/10.1002/aenm.201703659
WANG L G, ZHOU H P, HU J N, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells [J]. Science, 2019, 363(6424): 265-270. doi: 10.1126/science.aau5701http://dx.doi.org/10.1126/science.aau5701
XIONG Q, YANG L K, ZHOU Q, et al. NdCl3 dose as a universal approach for high-efficiency perovskite solar cells based on low-temperature-processed SnOx [J]. ACS Appl. Mater. Interfaces, 2020, 12(41): 46306-46316. doi: 10.1021/acsami.0c13296http://dx.doi.org/10.1021/acsami.0c13296
HESSE S, ZIMMERMANN J, VON SEGGERN H, et al. CsEuBr3: crystal structure and its role in the photostimulation of CsBr∶Eu2+ [J]. J. Appl. Phys., 2006, 100(8): 083506-1-5. doi: 10.1063/1.2358328http://dx.doi.org/10.1063/1.2358328
ZHUANG X M, ZHOU D L, LIU S N, et al. Learning from plants: lycopene additive passivation toward efficient and “fresh” perovskite solar cells with oxygen and ultraviolet resistance [J]. Adv. Energy Mater., 2022, 12(25): 2200614-1-14. doi: 10.1002/aenm.202200614http://dx.doi.org/10.1002/aenm.202200614
MANDEL'TSVAIG Y B. Investigation of bremsstrahlung dosimeters based on a combination of semicronductor phototransducer and scintillator [J]. Biomed. Eng., 1967, 1(3): 139-143. doi: 10.1007/bf00561720http://dx.doi.org/10.1007/bf00561720
WU Y H, DING X H, SHI X Q, et al. Highly efficient infrared light-converting perovskite solar cells: direct electron injection from NaYF4∶Yb3+, Er3+ to the TiO2 [J]. ACS Sustain. Chem. Eng., 2018, 6(11): 14004-14009. doi: 10.1021/acssuschemeng.8b02500http://dx.doi.org/10.1021/acssuschemeng.8b02500
XU F, GAO H P, LIANG J W, et al. Enhanced upconversion luminescence in Cu1.8S@NaYF4∶Yb@ NaYF4∶Yb,Er core-shell nanoparticles [J]. Ceram. Int., 2019, 45(17): 21557-21563. doi: 10.1016/j.ceramint.2019.07.149http://dx.doi.org/10.1016/j.ceramint.2019.07.149
WU J H, YANG Z W, QIU C Y, et al. Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles [J]. Nanoscale, 2018, 10(17): 8023-8030. doi: 10.1039/c8nr00594jhttp://dx.doi.org/10.1039/c8nr00594j
VU T H Q, BONDZIOR B, STEFAŃSKA D, et al. Influence of temperature on near-infrared luminescence, energy transfer mechanism and the temperature sensing ability of La2MgTiO6∶Nd3+ double perovskites [J]. Sens. Actuators A Phys., 2021, 317: 112453-1-9. doi: 10.1016/j.sna.2020.112453http://dx.doi.org/10.1016/j.sna.2020.112453
ZI L, XU W, SUN R, et al. Lanthanide-doped MAPbI3 single crystals: fabrication, optical and electrical properties, and multi-mode photodetection [J]. Chem. Mater., 2022, 34(16): 7412-7423. doi: 10.1021/acs.chemmater.2c01549http://dx.doi.org/10.1021/acs.chemmater.2c01549
YIN Z, ZHANG X R, ZHOU D L, et al. Enhanced upconversion luminescence on the plasmonic architecture of Au⁃Ag nanocages [J]. RSC Adv., 2016, 6(89): 86297-86300. doi: 10.1039/c6ra18457jhttp://dx.doi.org/10.1039/c6ra18457j
宋宏伟, 周东磊, 白雪, 等. 稀土掺杂量子剪裁发光材料简述 [J]. 中国稀土学报, 2022, 40(2): 169-180.
SONG H W, ZHOU D L, BAI X, et al. A review: rare earth doped quantum cutting luminescent materials [J]. J. Chin. Soc. Rare Earths, 2022, 40(2): 169-180. (in Chinese).
SUN R, ZHOU D L, LU P, et al. In situ preparation of two-dimensional ytterbium ions doped all-inorganic perovskite nanosheets for high-performance visual dual-bands photodetectors [J]. Nano Energy, 2022, 93: 106815. doi: 10.1016/j.nanoen.2021.106815http://dx.doi.org/10.1016/j.nanoen.2021.106815
SHAO L, LIU D, LYU J, et al. Near-infrared-pumped photon upconversion in CsPbI3 and CaF2∶Yb3+/Ho3+ nanocomposites for bio-imaging application [J]. Mater. Today Phys., 2021, 21: 100495. doi: 10.1016/j.mtphys.2021.100495http://dx.doi.org/10.1016/j.mtphys.2021.100495
DING N, XU W, ZHOU D L, et al. Upconversion ladder enabled super-sensitive narrowband near-infrared photodetectors based on rare earth doped florine perovskite nanocrystals [J]. Nano Energy, 2020, 76: 105103-1-9. doi: 10.1016/j.nanoen.2020.105103http://dx.doi.org/10.1016/j.nanoen.2020.105103
LI D Y, XU W, ZHOU D L, et al. Cerium-doped perovskite nanocrystals for extremely high-performance deep-ultraviolet photoelectric detection [J]. Adv. Opt. Mater., 2021, 9(22): 2100423-1-8. doi: 10.1002/adom.202100423http://dx.doi.org/10.1002/adom.202100423
LUO X, DING T, LIU X, et al. Quantum-cutting luminescent solar concentrators using ytterbium-doped perovskite nanocrystals [J]. Nano Lett., 2019, 19(1): 338-341. doi: 10.1021/acs.nanolett.8b03966http://dx.doi.org/10.1021/acs.nanolett.8b03966
COHEN T A, MILSTEIN T J, KROUPA D M, et al. Quantum-cutting Yb3+-doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators [J]. J. Mater. Chem. A, 2019, 7(15): 9279-9288. doi: 10.1039/c9ta01261chttp://dx.doi.org/10.1039/c9ta01261c
WU X W, LI H W, WANG K, et al. CH3NH3Pb1-xEuxI3 mixed halide perovskite for hybrid solar cells: the impact of divalent europium doping on efficiency and stability [J]. RSC Adv., 2018, 8(20): 11095-11101. doi: 10.1039/c7ra12754ehttp://dx.doi.org/10.1039/c7ra12754e
XIANG W C, WANG Z W, KUBICKI D J, et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells [J]. Joule, 2019, 3(1): 205-214. doi: 10.1016/j.joule.2018.10.008http://dx.doi.org/10.1016/j.joule.2018.10.008
YANG S M, ZHAO H, HAN Y, et al. Europium and acetate co-doping strategy for developing stable and efficient CsPbI2Br perovskite solar cells [J]. Small, 2019, 15(46): 1904387-1-9. doi: 10.1002/smll.201904387http://dx.doi.org/10.1002/smll.201904387
CHEN L B, WU W, WANG J P, et al. Lanthanide stabilized all-inorganic CsPbI2Br perovskite solar cells with superior thermal resistance [J]. ACS Appl. Energy Mater., 2021, 4(4): 3937-3944. doi: 10.1021/acsaem.1c00311http://dx.doi.org/10.1021/acsaem.1c00311
DUAN J L, ZHAO Y Y, YANG X Y, et al. Lanthanide ions doped CsPbBr3 halides for HTM-free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1.594 V [J]. Adv. Energy Mater., 2018, 8(31): 1802346-1-9. doi: 10.1002/aenm.201802346http://dx.doi.org/10.1002/aenm.201802346
JENA A K, KULKARNI A, SANEHIRA Y, et al. Stabilization of α-CsPbI3 in ambient room temperature conditions by incorporating Eu into CsPbI3 [J]. Chem. Mater., 2018, 30(19): 6668-6674. doi: 10.1021/acs.chemmater.8b01808http://dx.doi.org/10.1021/acs.chemmater.8b01808
CHEN S L, ZHANG T J, LIU X L, et al. Lattice reconstruction of La-incorporated CsPbI2Br with suppressed phase transition for air-processed all-inorganic perovskite solar cells [J]. J. Mater. Chem. C, 2020, 8(10): 3351-3358. doi: 10.1039/c9tc05736fhttp://dx.doi.org/10.1039/c9tc05736f
LI S F, ZHU L N, KAN Z P, et al. A multifunctional additive of scandium trifluoromethanesulfonate to achieve efficient inverted perovskite solar cells with a high fill factor of 83.80% [J]. J. Mater. Chem. A, 2020, 8(37): 19555-19560. doi: 10.1039/d0ta07567ahttp://dx.doi.org/10.1039/d0ta07567a
WANG K, ZHENG L Y, ZHU T, et al. Efficient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations [J]. Nano Energy, 2019, 61: 352-360. doi: 10.1016/j.nanoen.2019.04.073http://dx.doi.org/10.1016/j.nanoen.2019.04.073
ARUMUGAM G M, XU C X, KARUNAKARAN S K, et al. Low threshold lasing from novel thulium-incorporated C(NH2)3PbI3 perovskite thin films in Fabry-Pérot resonator [J]. J. Mater. Chem. C, 2018, 6(46): 12537-12546. doi: 10.1039/c8tc04697bhttp://dx.doi.org/10.1039/c8tc04697b
SONG Z L, XU W, WU Y J, et al. Incorporating of lanthanides ions into perovskite film for efficient and stable perovskite solar cells [J]. Small, 2020, 16(40): 2001770-1-11. doi: 10.1002/smll.202001770http://dx.doi.org/10.1002/smll.202001770
KARUNAKARAN S K, ARUMUGAM G M, YANG W T, et al. Europium(Ⅱ)-doped all-inorganic CsPbBr3 perovskite solar cells with carbon electrodes [J]. Solar RRL, 2020, 4(11): 2000390. doi: 10.1002/solr.202000390http://dx.doi.org/10.1002/solr.202000390
WANG M, DENG K M, MENG L X, et al. Bifunctional ytterbium (Ⅲ) chloride driven low-temperature synthesis of stable α-CsPbI3 for high-efficiency inorganic perovskite solar cells [J]. Small Methods, 2020, 4(2): 1900652. doi: 10.1002/smtd.201900652http://dx.doi.org/10.1002/smtd.201900652
YANG Y, HAN D W, YANG Y, et al. Redox-inactive samarium(Ⅲ) acetylacetonate as dopant enabling cation substitution and interfacial passivation for efficient and stable CsPbI2Br perovskite solar cells [J]. APL Mater., 2020, 8(7): 071102-1-9. doi: 10.1063/5.0011918http://dx.doi.org/10.1063/5.0011918
PATIL J V, MALI S S, HONG C K. Boosting the stability of fully-inorganic perovskite solar cells through samarium doped CsPbI2Br perovskite [J]. ACS Sustain. Chem. Eng., 2020, 8(43): 16364-16371. doi: 10.1021/acssuschemeng.0c06452http://dx.doi.org/10.1021/acssuschemeng.0c06452
WANG Q, WANG X M, YANG Z, et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement [J]. Nat. Commun., 2019, 10(1): 5633-1-8. doi: 10.1038/s41467-019-13580-whttp://dx.doi.org/10.1038/s41467-019-13580-w
CHIBA T, SATO J, ISHIKAWA S, et al. Neodymium chloride-doped perovskite nanocrystals for efficient blue light-emitting devices [J]. ACS Appl. Mater. Interfaces, 2020, 12(48): 53891-53898. doi: 10.1021/acsami.0c11736http://dx.doi.org/10.1021/acsami.0c11736
SHEN X Y, WANG Z Y, TANG C Y, et al. Near-infrared LEDs based on quantum cutting-activated electroluminescence of ytterbium ions [J]. Nano Lett., 2023, 23(1): 82-90. doi: 10.1021/acs.nanolett.2c03679http://dx.doi.org/10.1021/acs.nanolett.2c03679
LI S R, HU Q S, LUO J J, et al. Self-trapped exciton to dopant energy transfer in rare earth doped lead-free double perovskite [J]. Adv. Opt. Mater., 2019, 7(23): 1901098-1-6. doi: 10.1002/adom.201901098http://dx.doi.org/10.1002/adom.201901098
LI P P, DUAN Y M, LU Y, et al. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr3 quantum dot glass for WLEDs [J]. Nanoscale, 2020, 12(12): 6630-6636. doi: 10.1039/d0nr01207fhttp://dx.doi.org/10.1039/d0nr01207f
CHENG Y Z, SHEN C Y, SHEN L L, et al. Tb3+, Eu3+ co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs [J]. ACS Appl. Mater. Interfaces, 2018, 10(25): 21434-21444. doi: 10.1021/acsami.8b05003http://dx.doi.org/10.1021/acsami.8b05003
ZHANG G D, WEI Y, DANG P P, et al. Facile solution synthesis of Bi3+/Yb3+ ions co-doped Cs2Na0.6Ag0.4InCl6 double perovskites with near-infrared emission [J]. Dalton Trans., 2020, 49(43): 15231-15237. doi: 10.1039/d0dt03102jhttp://dx.doi.org/10.1039/d0dt03102j
ZHU Y S, ZHU J Y, SONG H Z, et al. Samarium doping improves luminescence efficiency of Cs3Bi2Br9 perovskite quantum dots enabling efficient white light-emitting diodes [J]. J. Rare Earths, 2021, 39(4): 374-379. doi: 10.1016/j.jre.2020.06.007http://dx.doi.org/10.1016/j.jre.2020.06.007
WANG C Y, LIANG P, XIE R J, et al. Highly efficient lead-free (Bi,Ce)-codoped Cs2Ag0.4Na0.6InCl6 double perovskites for white light-emitting diodes [J]. Chem. Mater., 2020, 32(18): 7814-7821. doi: 10.1021/acs.chemmater.0c02463http://dx.doi.org/10.1021/acs.chemmater.0c02463
HE Q Y, ZHANG Y Q, YU Y X, et al. Ultrastable Gd3+ doped CsPbBrI2 nanocrystals red glass for high efficiency WLEDs [J]. Chem. Eng. J., 2021, 411: 128530-1-7. doi: 10.1016/j.cej.2021.128530http://dx.doi.org/10.1016/j.cej.2021.128530
PAN G C, BAI X, XU W, et al. Impurity ions codoped cesium lead halide perovskite nanocrystals with bright white light emission toward ultraviolet⁃white light-emitting diode [J]. ACS Appl. Mater. Interfaces, 2018, 10(45): 39040-39048. doi: 10.1021/acsami.8b14275http://dx.doi.org/10.1021/acsami.8b14275
WANG C, ZHAO G J. Codoping of lead-free double perovskites promotes near-infrared photoluminescence [J]. Angew. Chem. Int. Ed., 2021, 60(2): 540-542. doi: 10.1002/anie.202009896http://dx.doi.org/10.1002/anie.202009896
HUANG H, LI R f, JIN S L, et al. Ytterbium-doped CsPbCl3 quantum cutters for near-infrared light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2021, 13(29): 34561-34571. doi: 10.1021/acsami.1c09421http://dx.doi.org/10.1021/acsami.1c09421
ZHAO J, PAN G C, ZHU Y X, et al. High-efficiency and wavelength-tunable near-infrared emission of lanthanide ions doped lead-free halide double perovskite nanocrystals toward fluorescence imaging [J]. ACS Appl. Mater. Interfaces, 2022, 14(37): 42215-42222. doi: 10.1021/acsami.2c10350http://dx.doi.org/10.1021/acsami.2c10350
NIE J H, ZHOU B, FANG S F, et al. Efficient multicolor and white photoluminescence in erbium- and holmium-incorporated Cs2NaInCl6∶Sb3+ double perovskites [J]. Chem. Mater., 2022, 34(14): 6288-6295. doi: 10.1021/acs.chemmater.2c00333http://dx.doi.org/10.1021/acs.chemmater.2c00333
JIN S L, LI R F, HUANG H, et al. Compact ultrabroadband light-emitting diodes based on lanthanide-doped lead-free double perovskites [J]. Light Sci. Appl., 2022, 11(1): 52-1-13. doi: 10.1038/s41377-022-00739-2http://dx.doi.org/10.1038/s41377-022-00739-2
AHMED G H, EL-DEMELLAWI J K, YIN J, et al. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation [J]. ACS Energy Lett., 2018, 3(10): 2301-2307. doi: 10.1021/acsenergylett.8b01441http://dx.doi.org/10.1021/acsenergylett.8b01441
MOON B J, KIM S J, LEE S, et al. Rare-earth-element-ytterbium-substituted lead-free inorganic perovskite nanocrystals for optoelectronic applications [J]. Adv. Mater., 2019, 31(33): 1901716-1-7. doi: 10.1002/adma.201901716http://dx.doi.org/10.1002/adma.201901716
ZHENG L Y, WANG K, ZHU T, et al. Solution-processed ultrahigh detectivity photodetectors by hybrid perovskite incorporated with heterovalent neodymium cations [J]. ACS Omega, 2019, 4(14): 15873-15878. doi: 10.1021/acsomega.9b01797http://dx.doi.org/10.1021/acsomega.9b01797
RONG S S, XIAO Y Q, JIANG J, et al. Strongly enhanced photoluminescence and photoconductivity in erbium-doped MAPbBr3 single crystals [J]. J. Phys. Chem. C, 2020, 124(16): 8992-8. doi: 10.1021/acs.jpcc.0c01959http://dx.doi.org/10.1021/acs.jpcc.0c01959
DING N, SHAO L, XIE T Y, et al. Highly-sensitive, stable, and fast-response lead-free Cs2AgBiBr6 double perovskite photodetectors enabled by synergistic engineering of doping Na+/Ce3+ and integrating Ag nanoparticles film [J]. Laser Photonics Rev., 2022, 16(12): 2200301. doi: 10.1002/lpor.202200301http://dx.doi.org/10.1002/lpor.202200301
0
浏览量
1147
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构